Data Mining Concept

Sunee Pongpinigpinyo

1

References

- Discovering Knowledge in Data
 - Daniel T Larose, 2005
- Data Mining: Concepts and Techniques, 2nd Edition, 2005
 - Micheline Kamber, Jiawei Han
- Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, 2005
 - Ian H. Witten, Eibe Frank
- Introduction to Data Mining, 2006
 - Pang-Ning Tan, Michael Steinbach, and Vipin Kumar

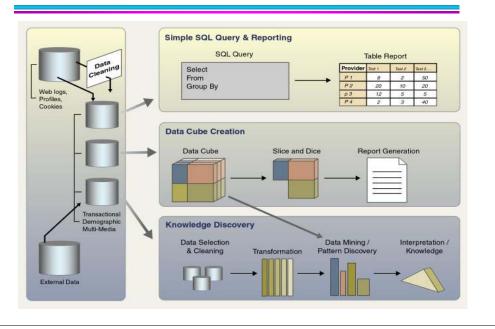
Why Mine Data? Commercial Viewpoint

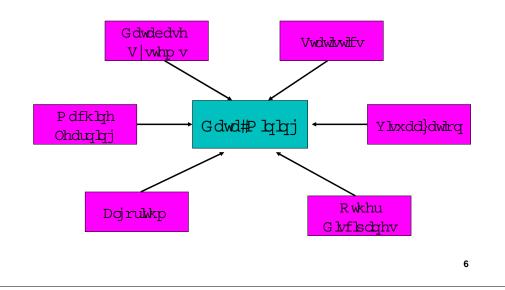
- Lots of data is being collected and warehoused
 - Web data, e-commerce
 - purchases at department/ grocery stores
 - Bank/Credit Card transactions
- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an *edge* (e.g. in Customer Relationship Management)

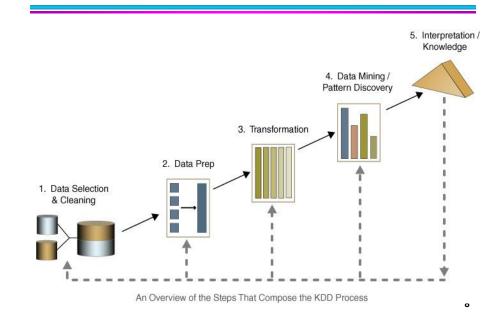
Why Mine Data? Scientific Viewpoint

- Data collected and stored at enormous speeds (GB/hour)
 - remote sensors on a satellite
 - telescopes scanning the skies
 - microarrays generating gene expression data
 - scientific simulations generating terabytes of data
- Traditional techniques infeasible for raw data
- Data mining may help scientists
 - in classifying and segmenting data
 - in Hypothesis Formation

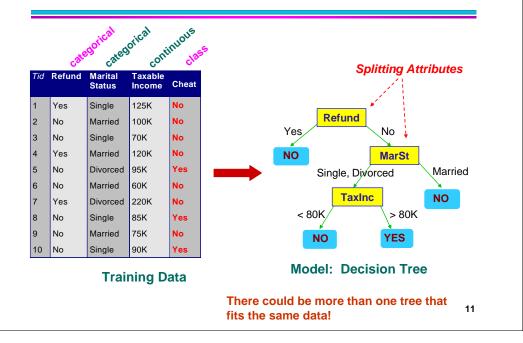
2


What Is Data Mining?

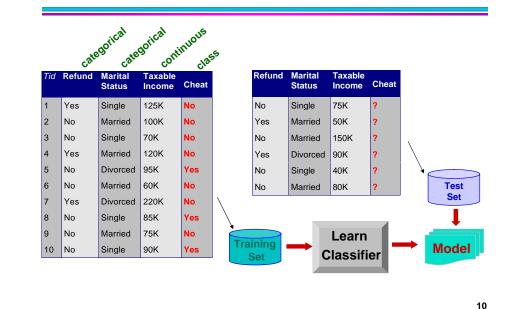

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously unknown</u> and <u>potentially useful</u>) patterns or knowledge from huge amount of data
 - Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - (Deductive) query processing.
 - Expert systems or small ML/statistical programs


Data Management Environments and Data Mining

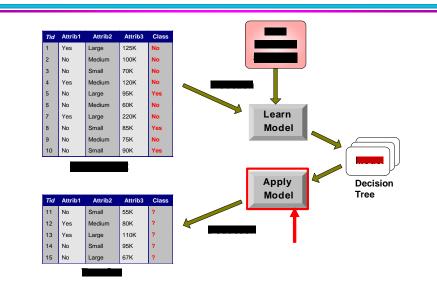
Data Mining: Confluence of Multiple Disciplines

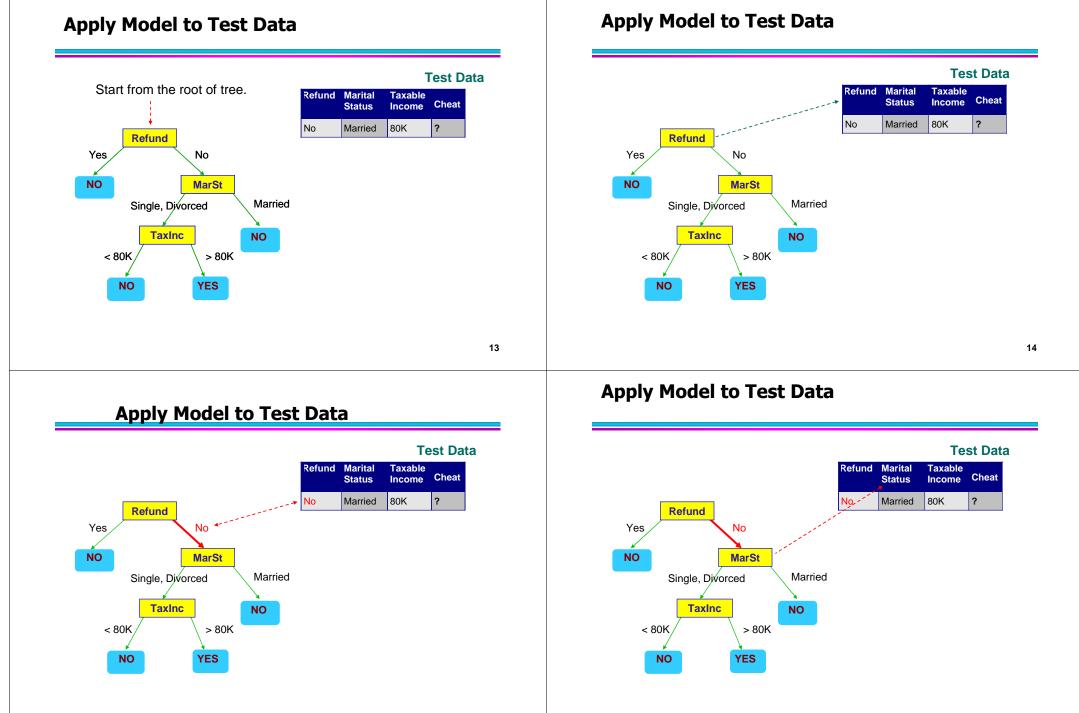

Knowledge Discovery In Databases Process

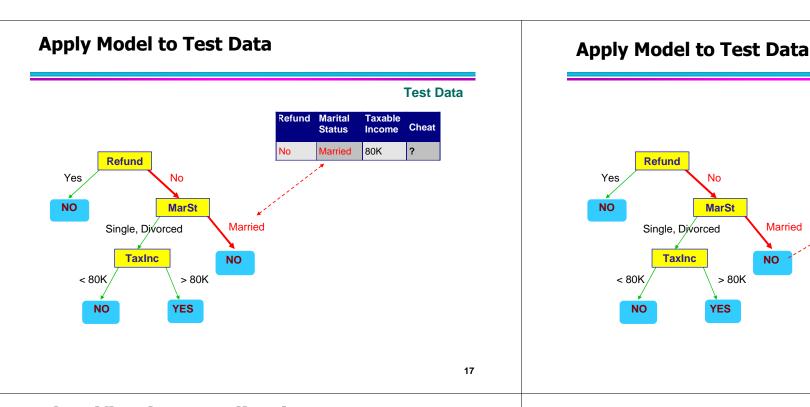
Data Mining: On What Kinds of Data?


- Relational database
- Data warehouse
- Transactional database
- Advanced database and information repository
 - Object-relational database
 - Spatial and temporal data
 - Time-series data
 - Multimedia database
 - Heterogeneous and legacy database
 - Text databases & WWW

Example of a Decision Tree




9


Classification Example

Decision Tree Classification Task

Classification: Application 1

- Direct Marketing
 - Goal: Reduce cost of mailing by *targeting* a set of consumers likely to buy a new cell-phone product.
 - Approach:
 - Use the data for a similar product introduced before.
 - We know which customers decided to buy and which decided otherwise. This {buy, don't buy} decision forms the class attribute.
 - Collect various demographic, lifestyle, and companyinteraction related information about all such customers.
 - Type of business, where they stay, how much they earn, etc.
 - Use this information as input attributes to learn a classifier model.

From [Berry & Linoff] Data Mining Techniques, 1997

Classification: Application 2 Deviation/Anomaly Detection

Married

NO

Refund

No

Marital

Status

Married

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection

No

MarSt

> 80K

YES

DOS

112R

Proh

Test Data

Cheat

Taxable

Income

Assign Cheat to "No"

80K

 Network Intrusion Detection

Typical network traffic at University level may reach over 100 million connections per day

19

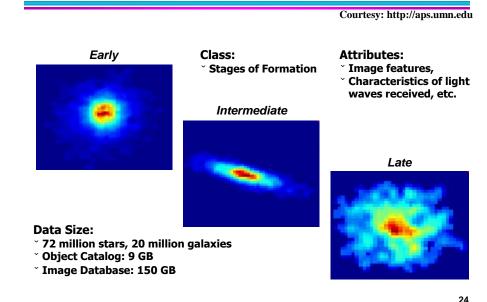
Classification: Application 2

- Fraud Detection
 - Goal: Predict fraudulent cases in credit card transactions.
 - Approach:
 - Use credit card transactions and the information on its account-holder as attributes.
 - When does a customer buy, what does he buy, how often he pays on time. etc
 - Label past transactions as fraud or fair transactions. This forms the class attribute.
 - Learn a model for the class of the transactions.
 - Use this model to detect fraud by observing credit card transactions on an account.

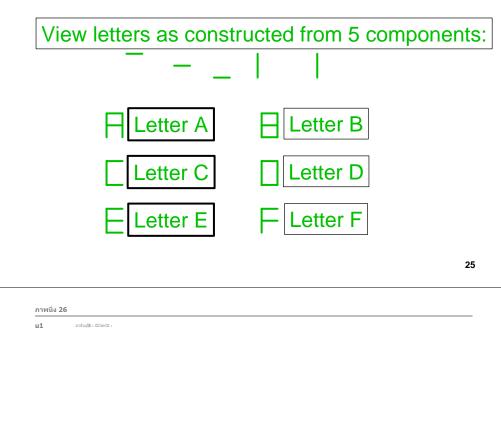
Classification: Application 3

- Customer Attrition/Churn:
 - Goal: To predict whether a customer is likely to be lost to a competitor.
 - Approach:
 - Use detailed record of transactions with each of the past and present customers, to find attributes.
 - How often the customer calls, where he calls, what time-of-the day he calls most, his financial status, marital status, etc.
 - Label the customers as loyal or disloyal.
 - Find a model for loyalty.

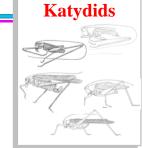
From [Berry & Linoff] Data Mining Techniques, 1997


22

Classification: Application 4

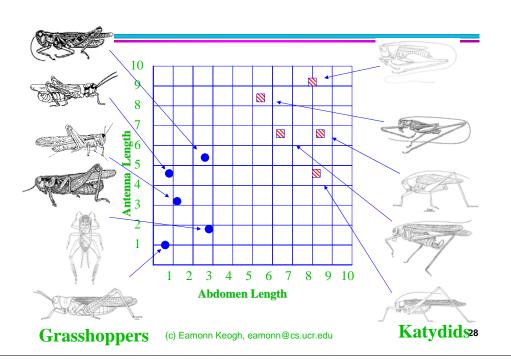

- Sky Survey Cataloging
 - Goal: To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory).
 - 3000 images with 23,040 x 23,040 pixels per image.
 - Approach:
 - Segment the image.
 - Measure image attributes (features) 40 of them per object.
 - Model the class based on these features.
 - Success Story: Could find 16 new high red-shift quasars, some of the farthest objects that are difficult to find!

21


Classifying Galaxies

Letter Recognition

Given a collection of annotated data. (in this case 5 instances of **Katydids** and five of **Grasshoppers**), decide what type of insect the unlabeled example is.


(c) Eamonn Keogh, eamonn@cs.ucr.edu

Color {Green, Brown, Gray, Other}

Has Wings?

x4

Clustering Definition

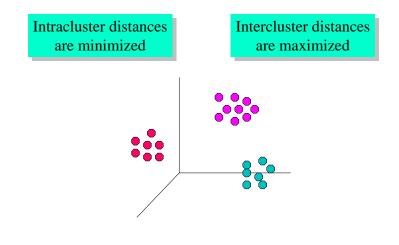
- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that
 - Data points in one cluster are more similar to one another.
 - Data points in separate clusters are less similar to one another.
- Similarity Measures:
 - Euclidean Distance if attributes are continuous.
 - Other Problem-specific Measures.

(c) Eamonn Keogh, eamonn@cs.ucr.edu Illustrating Clustering

1 2 3 4 5 6 7 8 9

Abdomen Length

⊠ Katydids


• Grasshoppers

10 9

8

2

⊠Hxfdghdq#Glwdqfh#Edvhg#Foxwhulqj#q#60G#vsdfh1

What is Similarity?

(c) Eamonn Keogh, eamonn@cs.ucr.edu

32

Hierarchical Clustering Example

Iris Data Set

Setosa

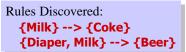
Virginica

34

• The data originally appeared in Fisher, R. A. (1936). "The Use of Multiple Measurements in Axonomic Problems," Annals of Eugenics 7, 179–188.

·Hierarchical Clustering Explorer Version 3.0, Human-Computer Interaction Lab, University of Maryland, <u>http://www.cs.umd.edu/hcil/multi-</u>

Clustering: Application

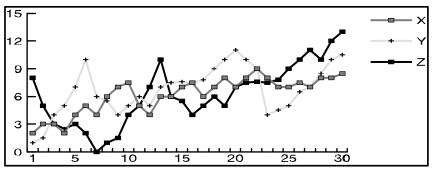

- Market Segmentation:
 - Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.
 - Approach:
 - Collect different attributes of customers based on their geographical and lifestyle related information.
 - Find clusters of similar customers.
 - Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

33

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection;
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk


Association Rule Discovery: Application 1

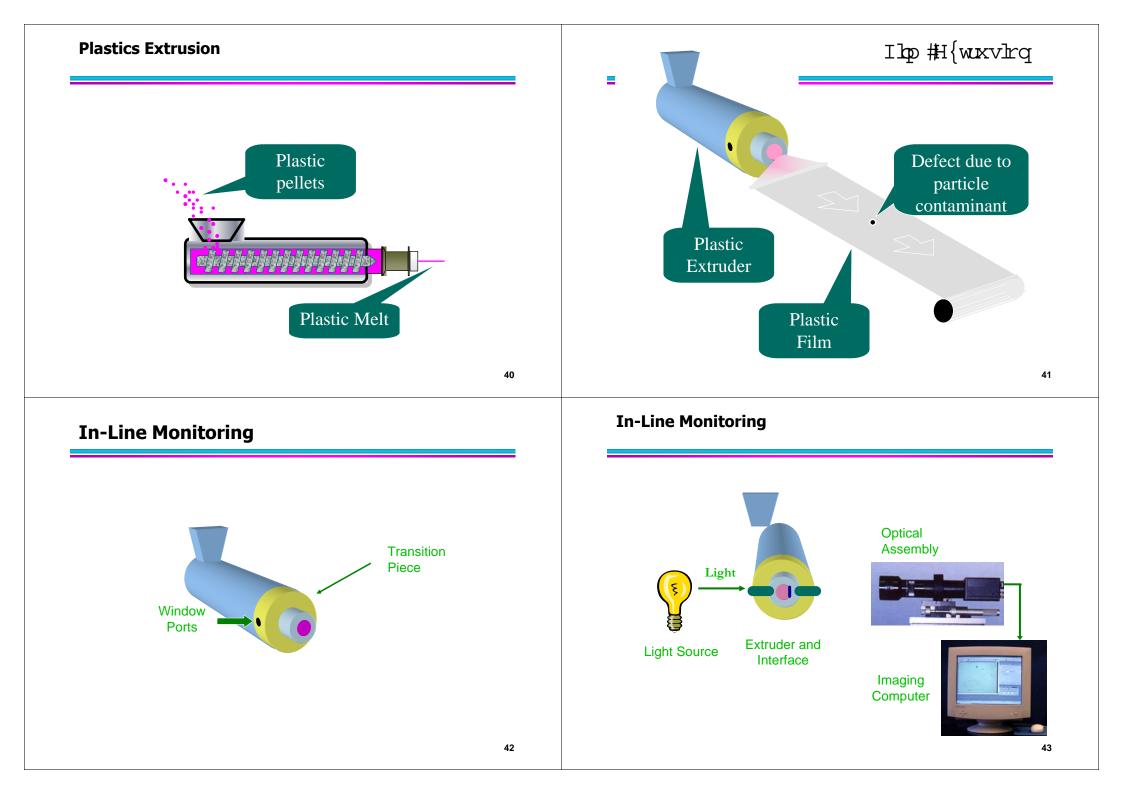
- Marketing and Sales Promotion:
 - Let the rule discovered be
 - {doughnut, ... } --> {Potato Chips}
 - Potato Chips as consequent => Can be used to determine what should be done to boost its sales.
 - <u>Doughnut in the antecedent</u> => Can be used to see which products would be affected if the store discontinues selling Doughnut.
 - <u>Doughnut in antecedent and Potato chips in</u> <u>consequent</u> => Can be used to see what products should be sold with Doughnut to promote sale of Potato chips!

36

Ex: Time Series Analysis

- Example: Stock Market
- Predict future values
- Determine similar patterns over time
- Classify behavior

Regression


- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Greatly studied in statistics, neural network fields.
- Examples:
 - Predicting sales amounts of new product based on advetising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Time series prediction of stock market indices.

37

Examples of data mining in science & engineering

1. Data mining in Chemical Engineering

"Data Mining for In-line Image Monitoring of Extrusion Processing" K.Torabi, L D. Ing, S. Sayad, and S.T. Balke

Melt With Contaminant Particles (WP)
1. Define the problem
Classify images into those with particles (WP) and those without particles (WO).

7. Deploy model

46

WO

WP

2. Build a data mining database	4. Prepare data for modeling	
 2000 Images 54 Input variables all numeric One output variables with two possible values (With Particle and Without Particle) 	 Pre-processed images to remove noise Dataset 1 with sharp images: 1350 images including 1257 without particles and 91 with par Dataset 2 with sharp and blurry images: 2000 images including 1909 without particles and blur particles and 91 with particles 54 Input variables, all numeric One output variable, with two possible values 	ту
	and WO)	
48 5. Build a model		
5. Build a model	and WO) 6. Evaluate Models 10 -fold cross-validation	
	and WO) 6. Evaluate Models 10 -fold cross-validation Dataset Attrib. Class One-R C4.5 3.N.N	Baye
5. Build a model	and WO) 6. Evaluate Models 10 -fold cross-validation	
5. Build a model Classification:	and WO) 6. Evaluate Models <i>10 -fold cross-validation</i> <u>Dataset Attrib. Class One-R C4.5 3.N.N</u> <u>Sharp 54 2 99.9 99.8 99.8</u>	Вауе

If pixel_density_max < 142 then WP

7. Deploy model

✤ A Visual Basic program will be developed to implement the model.

Moving Average Select Image File		
Folder:	File:	
Call Disk DME Keivan MaxMin MovAvg	frmMain.frx frmMovAvg.frm frmMovAvg.frx ipc32.bas iputi32.bas MaxMin.bas	*
Do Preprocessing		
Thresholding	Measurements	
MaxMin C MovAvg	Image C Particle	es
Threshold:	Particle Count:	
· · ·		