
Programming Language and Paradigms

IntroductionIntroduction

Tasanawan Soonklang
Department of Computing, Silpakorn University

Chapter 1 Topics

• A brief history of programming languages
• Why study programming languages?
• The art of language design
• Language evaluation criteria
• Programming language paradigms
• Implementation methods
• Programming environments

2

• A brief history of programming languages
• Why study programming languages?
• The art of language design
• Language evaluation criteria
• Programming language paradigms
• Implementation methods
• Programming environments

A Brief History of
Programming Languages

A Brief History of
Programming Languages

Brief history: Machine language

• Machine language – the sequence of bits that
directly controls a processor

• Add, compare, move data from one place to another,
and so forth at appropriate times

55 89 e5 53 83 ec 04 83 e4 f0 e8 31 00 00 00 89 c3 e8 2a 00
00 00 39 c3 74 10 8d b6 00 00 00 00 39 c3 7e 13 29 c3 39 c3
75 f6 89 1c 24 e8 6e 00 00 00 8b 5d fc c9 c3 29 d8 eb eb 90

GCD program in machine language for the x86 (Pentium)
instruction set, expressed as hexadecimal (base 16) numbers

4

• Machine language – the sequence of bits that
directly controls a processor

• Add, compare, move data from one place to another,
and so forth at appropriate times

55 89 e5 53 83 ec 04 83 e4 f0 e8 31 00 00 00 89 c3 e8 2a 00
00 00 39 c3 74 10 8d b6 00 00 00 00 39 c3 7e 13 29 c3 39 c3
75 f6 89 1c 24 e8 6e 00 00 00 8b 5d fc c9 c3 29 d8 eb eb 90

GCD program in machine language for the x86 (Pentium)
instruction set, expressed as hexadecimal (base 16) numbers

Brief history: Assembly language

• Assembly language – expressed with mnemonic
abbreviations, a less error-prone notation

pushl % ebp jle D
movl %esp, %ebp subl %eax, %ebx
pushl %ebx B: cmpl %eax, %ebx
subl $4, %esp jne A
andl $-16, %esp C: movl %ebx, (%esp)
call getint call put int
movl %eax, %ebx movl -4(%ebp), %ebx
call getint leave
cmpl %eax, %ebx ret
je C D: subl %ebx, %eax

A: cmpl %eax, %ebx jmp B

GCD program in assembly language for the x86.

5

• Assembly language – expressed with mnemonic
abbreviations, a less error-prone notation

pushl % ebp jle D
movl %esp, %ebp subl %eax, %ebx
pushl %ebx B: cmpl %eax, %ebx
subl $4, %esp jne A
andl $-16, %esp C: movl %ebx, (%esp)
call getint call put int
movl %eax, %ebx movl -4(%ebp), %ebx
call getint leave
cmpl %eax, %ebx ret
je C D: subl %ebx, %eax

A: cmpl %eax, %ebx jmp B

GCD program in assembly language for the x86.

Brief history: Assembly language

• One-to-one correspondence between mnemonics
and machine language instructions

• Assembler – system program for translating from
mnemonics to machine language

• Machine-dependent language – rewrite programs
for every new machine

• Difficult to read and write large programs

6

• One-to-one correspondence between mnemonics
and machine language instructions

• Assembler – system program for translating from
mnemonics to machine language

• Machine-dependent language – rewrite programs
for every new machine

• Difficult to read and write large programs

Brief history: high-level language

• Fortran – first high-level language in the mid-
1950s

• Machine-independent language
• Compiler – system program for translating

from high-level language to assembly or
machine language

• Not one-to-one correspondence between
source and target operations.

7

• Fortran – first high-level language in the mid-
1950s

• Machine-independent language
• Compiler – system program for translating

from high-level language to assembly or
machine language

• Not one-to-one correspondence between
source and target operations.

8

9

Why Study Programming
Languages?

Why Study Programming
Languages?

Why study programming languages?

• Understand obscure features
• Choose among alternative ways to express things
• Simulate useful features in languages that lack

them
• Make it easier to learn new languages
• Help you choose a language

11

• Understand obscure features
• Choose among alternative ways to express things
• Simulate useful features in languages that lack

them
• Make it easier to learn new languages
• Help you choose a language

Why study programming languages?

• Understand obscure features
– In C, help you understand unions, arrays &

pointers, separate compilation, catch and throw
– In C++, help you understand multiple inheritance,

* operator
– In Common Lisp, help you understand first-class

functions/closures, streams, catch and throw,
symbol internals

12

• Understand obscure features
– In C, help you understand unions, arrays &

pointers, separate compilation, catch and throw
– In C++, help you understand multiple inheritance,

* operator
– In Common Lisp, help you understand first-class

functions/closures, streams, catch and throw,
symbol internals

Why study programming languages?

• Choose among alternative ways to express things
– understand implementation costs:
– based on knowledge of what will be done underneath:

• use simple arithmetic equal (use x*x instead of x**2)
• use C pointers or Pascal "with" statement to factor address

calculations
• avoid call by value with large data items in Pascal
• avoid the use of call by name in Algol 60
• choose between computation and table lookup (e.g. for

cardinality operator in C or C++)

13

• Choose among alternative ways to express things
– understand implementation costs:
– based on knowledge of what will be done underneath:

• use simple arithmetic equal (use x*x instead of x**2)
• use C pointers or Pascal "with" statement to factor address

calculations
• avoid call by value with large data items in Pascal
• avoid the use of call by name in Algol 60
• choose between computation and table lookup (e.g. for

cardinality operator in C or C++)

Why study programming languages?

• Simulate useful features in languages that
lack them
– lack of named constants and enumerations in

Fortran
use variables that are initialized once, then never
changed

– lack of modules in C and Pascal
use comments and programmer discipline

– lack of suitable control structures in Fortran
use comments and programmer discipline for
control structures

14

• Simulate useful features in languages that
lack them
– lack of named constants and enumerations in

Fortran
use variables that are initialized once, then never
changed

– lack of modules in C and Pascal
use comments and programmer discipline

– lack of suitable control structures in Fortran
use comments and programmer discipline for
control structures

Why study programming languages?

• Make it easier to learn new languages
– some languages are similar; easy to walk down

family tree
– concepts have even more similarity;
– if you think in terms of iteration, recursion,

abstraction (for example), you will find it easier to
assimilate the syntax and semantic details of a
new language than if you try to pick it up in a
vacuum.

15

• Make it easier to learn new languages
– some languages are similar; easy to walk down

family tree
– concepts have even more similarity;
– if you think in terms of iteration, recursion,

abstraction (for example), you will find it easier to
assimilate the syntax and semantic details of a
new language than if you try to pick it up in a
vacuum.

Why study programming languages?

• Help you choose a language
– C vs. Modula-3 vs. C++ for systems programming
– Fortran vs. APL vs. Ada for numerical

computations
– Ada vs. Modula-2 for embedded systems
– Common Lisp vs. Scheme vs. ML for symbolic data

manipulation
– Java vs. C/CORBA for networked PC programs

16

• Help you choose a language
– C vs. Modula-3 vs. C++ for systems programming
– Fortran vs. APL vs. Ada for numerical

computations
– Ada vs. Modula-2 for embedded systems
– Common Lisp vs. Scheme vs. ML for symbolic data

manipulation
– Java vs. C/CORBA for networked PC programs

The Art of Language DesignThe Art of Language Design

What is a language for?

• Way of thinking – way of expressing algorithms
• Languages from the user's point of view
• Abstraction of virtual machine – way of specifying

what you want the hardware to do without getting
down into the bits

• Languages from the implementer's point of view

• Way of thinking – way of expressing algorithms
• Languages from the user's point of view
• Abstraction of virtual machine – way of specifying

what you want the hardware to do without getting
down into the bits

• Languages from the implementer's point of view

18

Why are there so many?
• Evolution - learn better ways of doing things over time

– goto-based control flow (Fortran)
– structured programming (Pascal, C)
– object-oriented structure (C++, Java)

• Special purpose
– symbolic data
– character strings
– low-level system programming
– reasoning, logical relation

• Socio-economic factors - proprietary interests, commercial advantage

• Personal preference - diverse ideas about what is pleasant to use

• Special hardware

• Evolution - learn better ways of doing things over time
– goto-based control flow (Fortran)
– structured programming (Pascal, C)
– object-oriented structure (C++, Java)

• Special purpose
– symbolic data
– character strings
– low-level system programming
– reasoning, logical relation

• Socio-economic factors - proprietary interests, commercial advantage

• Personal preference - diverse ideas about what is pleasant to use

• Special hardware

19

What makes a language successful?

• Expressive power – easy to express things, to use once fluent (C, APL,
Algol-68, Perl)

• Ease of use for novice – easy to learn (BASIC, Pascal, LOGO)

• Ease of implementation – (BASIC, Forth)

• Standardization – (C, Java)

• Open source - wide dissemination without cost (Pascal, Java)

• Excellent compilers – possible to compile to very good (fast/small)
code (Fortran)

• Patronage - backing of a powerful sponsor (COBOL, PL/1, Ada, Visual
Basic)

• Expressive power – easy to express things, to use once fluent (C, APL,
Algol-68, Perl)

• Ease of use for novice – easy to learn (BASIC, Pascal, LOGO)

• Ease of implementation – (BASIC, Forth)

• Standardization – (C, Java)

• Open source - wide dissemination without cost (Pascal, Java)

• Excellent compilers – possible to compile to very good (fast/small)
code (Fortran)

• Patronage - backing of a powerful sponsor (COBOL, PL/1, Ada, Visual
Basic)

20

Language Evaluation CriteriaLanguage Evaluation Criteria

Language Evaluation Criteria

• Readability: the ease with which
programs can be read and understood

• Writability: the ease with which a
language can be used to create programs

• Reliability: conformance to specifications
(i.e., performs to its specifications under
all conditions)

22

• Readability: the ease with which
programs can be read and understood

• Writability: the ease with which a
language can be used to create programs

• Reliability: conformance to specifications
(i.e., performs to its specifications under
all conditions)

Evaluation Criteria: Others
• Cost

– the ultimate total cost

• Portability
– the ease with which programs can be moved from one

implementation to another

• Generality
– the applicability to a wide range of applications

• Well-definedness
– the completeness and precision of the language’s official

definition

23

• Cost
– the ultimate total cost

• Portability
– the ease with which programs can be moved from one

implementation to another

• Generality
– the applicability to a wide range of applications

• Well-definedness
– the completeness and precision of the language’s official

definition

Evaluation Criteria: Readability
• Overall simplicity

– A manageable set of features and constructs
– Few feature multiplicity (means of doing the same

operation)
– Minimal operator overloading

• Orthogonality
– A relatively small set of primitive constructs can

be combined in a relatively small number of ways
– Every possible combination is legal
– Lack of orthogonality leads to exceptions to rules
– Makes the language easy to learn and read
– Meaning is context independent

24

• Overall simplicity
– A manageable set of features and constructs
– Few feature multiplicity (means of doing the same

operation)
– Minimal operator overloading

• Orthogonality
– A relatively small set of primitive constructs can

be combined in a relatively small number of ways
– Every possible combination is legal
– Lack of orthogonality leads to exceptions to rules
– Makes the language easy to learn and read
– Meaning is context independent

Evaluation Criteria: Readability
• Control statements

– The presence of well-known control structures (e.g.,
while statement)

• Data types and structures
– The presence of adequate facilities for defining data

structures
• Syntax considerations

– Identifier forms: flexible composition
– Special words and methods of forming compound

statements
– Form and meaning: self-descriptive constructs,

meaningful keywords

25

• Control statements
– The presence of well-known control structures (e.g.,
while statement)

• Data types and structures
– The presence of adequate facilities for defining data

structures
• Syntax considerations

– Identifier forms: flexible composition
– Special words and methods of forming compound

statements
– Form and meaning: self-descriptive constructs,

meaningful keywords

Evaluation Criteria: Writability
• Simplicity and orthogonality

– Few constructs, a small number of primitives, a
small set of rules for combining them

• Support for abstraction
– The ability to define and use complex structures or

operations in ways that allow details to be ignored
• Expressivity

– A set of relatively convenient ways of specifying
operations

– Example: the inclusion of for statement in many
modern languages

26

• Simplicity and orthogonality
– Few constructs, a small number of primitives, a

small set of rules for combining them
• Support for abstraction

– The ability to define and use complex structures or
operations in ways that allow details to be ignored

• Expressivity
– A set of relatively convenient ways of specifying

operations
– Example: the inclusion of for statement in many

modern languages

Evaluation Criteria: Reliability
• Type checking

– Testing for type errors
• Exception handling

– Intercept run-time errors and take corrective measures
• Aliasing

– Presence of two or more distinct referencing methods
for the same memory location

• Readability and writability
– A language that does not support “natural” ways of

expressing an algorithm will necessarily use “unnatural”
approaches, and hence reduced reliability

27

• Type checking
– Testing for type errors

• Exception handling
– Intercept run-time errors and take corrective measures

• Aliasing
– Presence of two or more distinct referencing methods

for the same memory location
• Readability and writability

– A language that does not support “natural” ways of
expressing an algorithm will necessarily use “unnatural”
approaches, and hence reduced reliability

Evaluation Criteria: Cost

• Training programmers to use language
• Writing programs
• Compiling programs
• Executing programs
• Language implementation system:

availability of free compilers
• Reliability: poor reliability leads to high costs
• Maintaining programs

28

• Training programmers to use language
• Writing programs
• Compiling programs
• Executing programs
• Language implementation system:

availability of free compilers
• Reliability: poor reliability leads to high costs
• Maintaining programs

Language Characteristics & Criteria
Criteria

Characteristic Readability Writability Reliability
Simplicity & orthogonality   

Control statements   

Data types and structure   

Syntax design   

Support for abstraction  

Expressivity  

Type checking 

Exception handling 

Restricted aliasing 
29

Criteria
Characteristic Readability Writability Reliability
Simplicity & orthogonality   

Control statements   

Data types and structure   

Syntax design   

Support for abstraction  

Expressivity  

Type checking 

Exception handling 

Restricted aliasing 

Language Design Trade-Offs
• Reliability vs. cost of execution

– Conflicting criteria
– Example: Java demands all references to array elements be

checked for proper indexing but that leads to increased execution
costs

• Readability vs. writability
– Another conflicting criteria
– Example: APL provides many powerful operators (and a large

number of new symbols), allowing complex computations to be
written in a compact program but at the cost of poor readability

• Writability (flexibility) vs. reliability
– Another conflicting criteria
– Example: C++ pointers are powerful and very flexible but not

reliably used
30

• Reliability vs. cost of execution
– Conflicting criteria
– Example: Java demands all references to array elements be

checked for proper indexing but that leads to increased execution
costs

• Readability vs. writability
– Another conflicting criteria
– Example: APL provides many powerful operators (and a large

number of new symbols), allowing complex computations to be
written in a compact program but at the cost of poor readability

• Writability (flexibility) vs. reliability
– Another conflicting criteria
– Example: C++ pointers are powerful and very flexible but not

reliably used

Programming Language
Paradigms

Programming Language
Paradigms

Programming Paradigms
• Imperative

– Central features are variables, assignment statements, and
iteration

– Examples: C, Pascal
• Object-oriented

– Data abstraction (Encapsulate data objects with processing),
inheritance, dynamic type binding

– Examples: Java, C++
• Functional

– Main means of making computations is by applying functions to
given parameters

– Examples: LISP, Scheme
• Logic

– Rule-based (rules are specified in no particular order)
– Example: Prolog

• Markup
– New; not a programming per se, but used to specify the layout of

information in Web documents
– Examples: XHTML, XML

32

• Imperative
– Central features are variables, assignment statements, and

iteration
– Examples: C, Pascal

• Object-oriented
– Data abstraction (Encapsulate data objects with processing),

inheritance, dynamic type binding
– Examples: Java, C++

• Functional
– Main means of making computations is by applying functions to

given parameters
– Examples: LISP, Scheme

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

• Markup
– New; not a programming per se, but used to specify the layout of

information in Web documents
– Examples: XHTML, XML

Programming Paradigms

• Imperative
– Von Neumann (Fortran, Pascal, Basic, C)
– Scripting (Perl, Python, JavaScript, PHP)
– Object-oriented (Smalltalk, Eiffel, C++)

• Declarative
– Functional (Scheme, ML, pure Lisp, FP)
– Logic, constraint-based (Prolog, VisiCalc, RPG)

• Imperative
– Von Neumann (Fortran, Pascal, Basic, C)
– Scripting (Perl, Python, JavaScript, PHP)
– Object-oriented (Smalltalk, Eiffel, C++)

• Declarative
– Functional (Scheme, ML, pure Lisp, FP)
– Logic, constraint-based (Prolog, VisiCalc, RPG)

33

Programming Paradigms: Alternatives

• Imperative
– Procedural (C)

• Block-Structured (Pascal, Ada)

– Object-based (Ada)

• Object-oriented (Ada, Object-Pascal, C++, Java)
– Parallel Processing (Ada, Pascal-S, Occam, C-Linda)

• Declarative
– Logic (Prolog)

– Functional (LISP, Scheme)
– Database (SQL)

34

• Imperative
– Procedural (C)

• Block-Structured (Pascal, Ada)

– Object-based (Ada)

• Object-oriented (Ada, Object-Pascal, C++, Java)
– Parallel Processing (Ada, Pascal-S, Occam, C-Linda)

• Declarative
– Logic (Prolog)

– Functional (LISP, Scheme)
– Database (SQL)

Example of GCD program
int gcd(int a, int b) {

while (a!=b) {
if (a>b) a = a-b;

else b = b-a;
}
return a;

} //C

(define gcd
(lambda (a b)

(cond ((= a b) a)
((> a b) (gcd (- a b) b))
(else (gcd (- b a) a)))))

;scheme

35

int gcd(int a, int b) {
while (a!=b) {

if (a>b) a = a-b;
else b = b-a;

}
return a;

} //C

(define gcd
(lambda (a b)

(cond ((= a b) a)
((> a b) (gcd (- a b) b))
(else (gcd (- b a) a)))))

;scheme

gcd(A,B,G) :- A = B, G=A.
gcd(A,B,G) :- A > B, C is A-B, gcd(C,B,G).
gcd(A,B,G) :- B > A, C is B-A,
gcd(C,A,G). %Prolog

Copyright © 2009 Elsevier, Inc. All rights reserved.

Programming Paradigms: Emerging

• Event-driven/Visual
– Continuous loop that responds to events
– Code is executed upon activation of events
– Subcategory of imperative
– Examples: Visual Basic .NET, Java

• Concurrent
– Cooperating processes
– Examples: High Performance Fortran

36

• Event-driven/Visual
– Continuous loop that responds to events
– Code is executed upon activation of events
– Subcategory of imperative
– Examples: Visual Basic .NET, Java

• Concurrent
– Cooperating processes
– Examples: High Performance Fortran

Programming Domains
• Scientific applications

– Large number of floating point computations
– Fortran

• Business applications
– Produce reports, use decimal numbers and characters
– COBOL

• Artificial intelligence
– Symbols rather than numbers manipulated
– LISP

• Systems programming
– Need efficiency because of continuous use
– C

• Web Programming
– Eclectic collection of languages: markup (e.g., XHTML), scripting

(e.g., PHP), general-purpose (e.g., Java)

37

• Scientific applications
– Large number of floating point computations
– Fortran

• Business applications
– Produce reports, use decimal numbers and characters
– COBOL

• Artificial intelligence
– Symbols rather than numbers manipulated
– LISP

• Systems programming
– Need efficiency because of continuous use
– C

• Web Programming
– Eclectic collection of languages: markup (e.g., XHTML), scripting

(e.g., PHP), general-purpose (e.g., Java)

A Brief
Historical
Lineage of
Some Key
Programming
Languages

38

Implementation MethodsImplementation Methods

Layered View
of Computer

Virtual computer
– the OS and
language
implementation
which are layered
over machine
interface of
a computer

40

Virtual computer
– the OS and
language
implementation
which are layered
over machine
interface of
a computer

Implementation Methods

• Compilation
– Programs are translated into machine

language

• Pure Interpretation
– Programs are interpreted by another

program known as an interpreter

• Hybrid /Mixing
– A compromise between compilers and

pure interpreters

41

• Compilation
– Programs are translated into machine

language

• Pure Interpretation
– Programs are interpreted by another

program known as an interpreter

• Hybrid /Mixing
– A compromise between compilers and

pure interpreters

Implementation Methods

• Interpretation:
– Greater flexibility
– Better diagnostics (error messages)

• Compilation
– Better performance

42

• Interpretation:
– Greater flexibility
– Better diagnostics (error messages)

• Compilation
– Better performance

Implementation Methods

• Compilation

• Interpretation

• Mixing• Compilation

• Interpretation

43Copyright © 2009 Elsevier, Inc. All rights reserved.

44

Implementation Methods

• Library routines and linking • Post-compilation assembly

45Copyright © 2009 Elsevier, Inc. All rights reserved.

Overview of Compilation

46 Copyright © 2009 Elsevier, Inc. All rights reserved.

Overview of Compilation

• Lexical analysis
• Syntax analysis
• Semantic Analysis & intermediate code

generation
• Target code generation
• Code improvement

47

• Lexical analysis
• Syntax analysis
• Semantic Analysis & intermediate code

generation
• Target code generation
• Code improvement

Overview of Compilation
• Lexical and Syntax Analysis

GCD Program (in C)

int main() {
int i = getint(), j = getint();
while (i != j) {
if (i > j) i = i - j;
else j = j - i;
}
putint(i);
}

48

int main() {
int i = getint(), j = getint();
while (i != j) {
if (i > j) i = i - j;
else j = j - i;
}
putint(i);
}

Overview of Compilation
• Lexical Analysis

• Scanning and parsing recognize the structure of
the program, groups characters into tokens, the
smallest meaningful units of the program

GCD Program Tokens

49

• Lexical Analysis
• Scanning and parsing recognize the structure of

the program, groups characters into tokens, the
smallest meaningful units of the program

GCD Program Tokens
int main () {
int i = getint () , j = getint () ;
while (i != j) {
if (i > j) i = i - j ;
else j = j - i ;
}
Putint (i) ;
}

Overview of Compilation

• Syntax Analysis
– Context-Free Grammar and Parsing

• Parsing organizes tokens into a parse tree that
represents higher-level constructs in terms of
their constituents

• Potentially recursive rules known as context-
free grammar define the ways in which these
constituents combine

50

• Syntax Analysis
– Context-Free Grammar and Parsing

• Parsing organizes tokens into a parse tree that
represents higher-level constructs in terms of
their constituents

• Potentially recursive rules known as context-
free grammar define the ways in which these
constituents combine

Overview of Compilation

• Context-Free Grammar and Parsing
Example (while loop in C)

iteration-statement → while (expression) statement

statement, in turn, is often a list enclosed in braces:
statement → compound-statement
compound-statement → { block-item-list opt }
where
block-item-list opt → block-item-list
or
block-item-list opt → ϵ
and
block-item-list → block-item
block-item-list → block-item-list block-item
block-item → declaration
block-item → statement

51

iteration-statement → while (expression) statement

statement, in turn, is often a list enclosed in braces:
statement → compound-statement
compound-statement → { block-item-list opt }
where
block-item-list opt → block-item-list
or
block-item-list opt → ϵ
and
block-item-list → block-item
block-item-list → block-item-list block-item
block-item → declaration
block-item → statement

Overview of Compilation
• Context-Free Grammar and Parsing

GCD Program Parse Tree

52 next slide

A

B

Overview of Compilation
• Context-Free Grammar and Parsing

53

Overview of Compilation
• Context-Free Grammar and Parsing

A B

54

Overview of Compilation
• Syntax Tree - GCD Program Parse Tree

55 Copyright © 2009 Elsevier, Inc. All rights reserved.

Programming EnvironmentsProgramming Environments

Programming Environments

• The collection of tools used in software development
• UNIX

– An older operating system and tool collection
– Nowadays often used through a GUI (e.g., CDE, KDE, or

GNOME) that run on top of UNIX

• Borland JBuilder
– An integrated development environment for Java

• Microsoft Visual Studio.NET
– A large, complex visual environment
– Used to program in C#, Visual BASIC.NET, Jscript, J#, or C++

57

• The collection of tools used in software development
• UNIX

– An older operating system and tool collection
– Nowadays often used through a GUI (e.g., CDE, KDE, or

GNOME) that run on top of UNIX

• Borland JBuilder
– An integrated development environment for Java

• Microsoft Visual Studio.NET
– A large, complex visual environment
– Used to program in C#, Visual BASIC.NET, Jscript, J#, or C++

Programming Environments

Tools

58

Programming Languages: Trend

59

Program
m

ing Languages:
Trend

60

Program
m

ing Languages:
Trend

References

Books
• Robert W. Sebesta. Concepts of Programming Languages,

Addison Wesley, 2006.
• Michael L. Scott. Programming Language Pragmatics.

Morgan Kaufmann Publishers, 2009

Interesting links
• history:http://en.wikipedia.org/wiki/History_of_programm

ing_languages
• timeline: http://www.levenez.com/lang/lang_a4.pdf

61

Books
• Robert W. Sebesta. Concepts of Programming Languages,

Addison Wesley, 2006.
• Michael L. Scott. Programming Language Pragmatics.

Morgan Kaufmann Publishers, 2009

Interesting links
• history:http://en.wikipedia.org/wiki/History_of_programm

ing_languages
• timeline: http://www.levenez.com/lang/lang_a4.pdf

