Programming Language and Paradigms

Introduction

Tasanawan Soonklang
Department of Computing, Silpakorn University

Chapter 1 Topics

A brief history of programming languages
Why study programming languages?

The art of language design

Language evaluation criteria
Programming language paradigms
Implementation methods

Programming environments

A Brief History of
Programming Languages

Brief history: Machine language

Machine language — the sequence of bits that
directly controls a processor

Add, compare, move data from one place to another,
and so forth at appropriate times

5589e553 83ec0483 e4f0e83100000089 c3e82a00
000039c3 74108db60000000039c37e13 29¢c339cc3
75f6 89 1c 24 e8 6e 00 0000 8b 5d fcc9c3 29 d8 eb eb 90

GCD program in machine language for the x86 (Pentium)
instruction set, expressed as hexadecimal (base 16) numbers

Brief history: Assembly language

* Assembly language — expressed with mnemonic
abbreviations, a less error-prone notation

pushl
movl
pushl
subl
and|
call
movl
call
cmpl
je

A: cmpl

% ebp
%esp, %ebp
%ebx

S4, %esp
$-16, %esp
getint
%eax, %ebx
getint
%eax, %ebx
C

%eax, %ebx

jle
subl
cmpl

movl
call
movl
leave
ret
subl

jmp

D
%eax, %ebx
%eax, %ebx

jne A
%ebx, (%esp)
put int

-4(%ebp), %ebx

%ebx, %eax
B

GCD program in assembly language for the x86.

Brief history: Assembly language

One-to-one correspondence between mnemonics
and machine language instructions

Assembler — system program for translating from
mnemonics to machine language

Machine-dependent language — rewrite programs
for every new machine

Difficult to read and write large programs

Brief history: high-level language

* Fortran —first high-level language in the mid-
1950s

* Machine-independent language

 Compiler — system program for translating
from high-level language to assembly or
machine language

* Not one-to-one correspondence between
source and target operations.

1956
¥
1958
1560
;
1962
#
1584
1966
L
1968
1870
L
1572
L]
1974
1576
1978
1980
1982
1584
1985
1988
1990

L]
1552

Lisp

|
. 0w

Common Lisp

C (K&R)
W
C++
Y)
Python =

Perl

Fortran |

COBOL I.'
Y P
Smalltalk
Pascal
|
o
Smalltalle 80
|
Ada B3
'. |
| |'
] |
Eiffel
e .

Prolog

Fortran 77

Fortran 90

ML

Ll
SML

Camil

1572

1574
L
1576
1978
)
1580
5@
1984
1986
.
l9gs
1550
¥
1982
1954
L]
1596
1958

2000
2002
2004
L
2006

2008

Common Lisp

Jaua’ - JavaScript

L]

Scheme R5RS

Java 2 (v1.5 beta)

c {KE:HJ

C++

L]
C++ (150)

‘c# Python2.0

|

C#2.0

Smalltalk 80

oD i

IIMUH

Fortran 77

L]
Fortran S0

ML

OCamil

Haskell 98

Why Study Programming
Languages?

Why study programming languages?

* Understand obscure features
* Choose among alternative ways to express things

* Simulate useful features in languages that lack
them

 Make it easier to learn new languages
* Help you choose a language

Why study programming languages?

 Understand obscure features

— In C, help you understand unions, arrays &
pointers, separate compilation, catch and throw

— In C++, help you understand multiple inheritance,
* operator

— In Common Lisp, help you understand first-class
functions/closures, streams, catch and throw,
symbol internals

Why study programming languages?

* Choose among alternative ways to express things

— understand implementation costs:

— based on knowledge of what will be done underneath:

use simple arithmetic equal (use x*x instead of x**2)

use C pointers or Pascal "with" statement to factor address
calculations

avoid call by value with large data items in Pascal
avoid the use of call by name in Algol 60

choose between computation and table lookup (e.g. for
cardinality operator in C or C++)

Why study programming languages?

14

e Simulate useful features in languages that
lack them

— lack of named constants and enumerations in
Fortran

use variables that are initialized once, then never
changed

— lack of modules in C and Pascal
use comments and programmer discipline
— lack of suitable control structures in Fortran

use comments and programmer discipline for
control structures

Why study programming languages?

 Make it easier to learn new languages

— some languages are similar; easy to walk down
family tree

— concepts have even more similarity;

— if you think in terms of iteration, recursion,
abstraction (for example), you will find it easier to
assimilate the syntax and semantic details of a

new language than if you try to pick it up in a
vacuum.

Why study programming languages?

* Help you choose a language
— Cvs. Modula-3 vs. C++ for systems programming

— Fortran vs. APL vs. Ada for numerical
computations

— Ada vs. Modula-2 for embedded systems

— Common Lisp vs. Scheme vs. ML for symbolic data
manipulation

— Java vs. C/CORBA for networked PC programs

The Art of Language Design

What is a language for?

Way of thinking — way of expressing algorithms
Languages from the user's point of view

Abstraction of virtual machine — way of specifying
what you want the hardware to do without getting
down into the bits

Languages from the implementer's point of view

Why are there so many?

Evolution - learn better ways of doing things over time
— goto-based control flow (Fortran)

— structured programming (Pascal, C)

— object-oriented structure (C++, Java)

Special purpose
— symbolic data
— character strings

— low-level system programming
— reasoning, logical relation

Socio-economic factors - proprietary interests, commercial advantage
Personal preference - diverse ideas about what is pleasant to use
Special hardware

What makes a language successful?

Expressive power — easy to express things, to use once fluent (C, APL,
Algol-68, Perl)

Ease of use for novice — easy to learn (BASIC, Pascal, LOGO)
Ease of implementation — (BASIC, Forth)
Standardization - (C, Java)

Open source - wide dissemination without cost (Pascal, Java)

Excellent compilers — possible to compile to very good (fast/small)
code (Fortran)

Patronage - backing of a powerful sponsor (COBOL, PL/1, Ada, Visual
Basic)

Language Evaluation Criteria

Language Evaluation Criteria

* Readability: the ease with which
programs can be read and understood

* Writability: the ease with which a
language can be used to create programs

* Reliability: conformance to specifications
(i.e., performs to its specifications under
all conditions)

Evaluation Criteria: Others

Cost
— the ultimate total cost
Portability

— the ease with which programs can be moved from one
implementation to another

Generality

— the applicability to a wide range of applications

Well-definedness

— the completeness and precision of the language’s official
definition

Evaluation Criteria: Readability

e Overall simplicity
— A manageable set of features and constructs

— Few feature multiplicity (means of doing the same
operation)

— Minimal operator overloading
* Orthogonality

— A relatively small set of primitive constructs can
be combined in a relatively small number of ways

— Every possible combination is legal

— Lack of orthogonality leads to exceptions to rules
— Makes the language easy to learn and read

— Meaning is context independent

Evaluation Criteria: Readability

e Control statements

— The presence of well-known control structures (e.g.,
while statement)

* Data types and structures

— The presence of adequate facilities for defining data
structures

e Syntax considerations
— ldentifier forms: flexible composition

— Special words and methods of forming compound
statements

— Form and meaning: self-descriptive constructs,
meaningful keywords

Evaluation Criteria: Writability

e Simplicity and orthogonality

— Few constructs, a small number of primitives, a
small set of rules for combining them

e Support for abstraction

— The ability to define and use complex structures or
operations in ways that allow details to be ignored

* Expressivity
— A set of relatively convenient ways of specifying
operations

— Example: the inclusion of for statement in many
modern languages

Evaluation Criteria: Reliability

Type checking
— Testing for type errors

Exception handling
— Intercept run-time errors and take corrective measures
Aliasing

— Presence of two or more distinct referencing methods
for the same memory location

Readability and writability

— A language that does not support “natural” ways of
expressing an algorithm will necessarily use “unnatura
approaches, and hence reduced reliability

I”

Evaluation Criteria: Cost

Training programmers to use language
Writing programs

Compiling programs

Executing programs

Language implementation system:
availability of free compilers

Reliability: poor reliability leads to high costs
Maintaining programs

Language Characteristics & Criteria

Type checking
Exception handling

Criteria

Characteristic Readability Writability Reliability
Simplicity & orthogonality v v v
Control statements 4 v v
Data types and structure 4 v v
Syntax design 4 v v
Support for abstraction v v
Expressivity v v

v

v

v

Restricted aliasing

Language Design Trade-Offs

* Reliability vs. cost of execution

— Conflicting criteria

— Example: Java demands all references to array elements be

checked for proper indexing but that leads to increased execution
costs

* Readability vs. writability

— Another conflicting criteria

— Example: APL provides many powerful operators (and a large
number of new symbols), allowing complex computations to be

written in a compact program but at the cost of poor readability

* Writability (flexibility) vs. reliability
— Another conflicting criteria

— Example: C++ pointers are powerful and very flexible but not
reliably used

Programming Language
Paradigms

Programming Paradigms

Imperative

— Central features are variables, assignment statements, and
iteration

— Examples: C, Pascal
Object-oriented

— Data abstraction (Encapsulate data objects with processing),
inheritance, dynamic type binding

— Examples: Java, C++
Functional

— Main means of making computations is by applying functions to
given parameters

— Examples: LISP, Scheme

Logic
— Rule-based (rules are specified in no particular order)
— Example: Prolog

Markup

— New; not a programming per se, but used to specify the layout of
information in Web documents

— Examples: XHTML, XML

Programming Paradigms

* |mperative

— Von Neumann (Fortran, Pascal, Basic, C)
— Scripting (Perl, Python, JavaScript, PHP)
— Object-oriented (Smalltalk, Eiffel, C++)

* Declarative
— Functional (Scheme, ML, pure Lisp, FP)
— Logic, constraint-based (Prolog, VisiCalc, RPG)

Programming Paradigms: Alternatives

* |mperative

— Procedural (C)

* Block-Structured (Pascal, Ada)
— Object-based (Ada)

* Object-oriented (Ada, Object-Pascal, C++, Java)
— Parallel Processing (Ada, Pascal-S, Occam, C-Linda)

* Declarative
— Logic (Prolog)
— Functional (LISP, Scheme)
— Database (SQL)

Example of GCD program

int gcd(int a, int b) {

(define gcd

while (al=b) { (lambda (a b)
if (a>b) a = a-b; (cond ((= a b) a)
else b = b-a; ((>ab)(gcd (-a b) b))
} (else (gcd (- b a) a)))))
return a;
} //C :scheme
gcd(A,B,G) :- A =B, G=A.
gcd(A,B,G) :- A>B, Cis A-B, gcd(C,B,G).
gcd(A,B,G) :- B> A, Cis B-A,
gcd(C,A,G). %Prolog

Copyright © 2009 Elsevier, Inc. All rights reserved.

35

Programming Paradigms: Emerging

* Event-driven/Visual
— Continuous loop that responds to events
— Code is executed upon activation of events
— Subcategory of imperative
— Examples: Visual Basic .NET, Java

* Concurrent
— Cooperating processes
— Examples: High Performance Fortran

Programming Domains

Scientific applications
— Large number of floating point computations
— Fortran

Business applications
— Produce reports, use decimal numbers and characters
— COBOL

Artificial intelligence
— Symbols rather than numbers manipulated
— LISP

Systems programming
— Need efficiency because of continuous use
— C

Web Programming

— Eclectic collection of languages: markup (e.g., XHTML), scripting
(e.g., PHP), general-purpose (e.g., Java)

A Brief
Historical
Lineage of
Some Key
Programming
Languages

38

Date of Origin

Puradism 1955 fold L il T3 b1 B i Ua 2D
L | I I | I I I I i I
{mperative Fortran Fuortran (4 Foatoan 77 Fortran W) —= Fortran 97
Clobl Cobol 68 == Cobad 74 Uabol B3
1Al + Jdowvinl
Alzol al -D.-\Ifn' i J—r- Moduln 2 ——= Modula 3
[Pasin| Ala Acddrts
L/ 1 }
ROPL —= (7 Y
OQlject-oricnled C++ = * C+4
| Siandard
Smalltalk 80 ——— l
Eiffel —= Javs
|,—+- CLOS
e Hewend Lisp = Common
Lisp
Scheme ———— Haskell
Miramnda A
Iswam = ML = WL
Srandard
Declarative Prolog - CLF
Faidn
(fagic) SEQUEL > QL2
T Tk Iave
H : Wigual
Eveni-driven B:::\;C
Cramererverd Concurrznt) > Java
*azcal
[—— imdicues desten influence Chp Fign
; e ST ! Perfornsance

Fortran

Implementation Methods

Layered View
of Computer

Virtual computer
— the OS and
language
Implementation
which are layered
over machine
interface of

a computer

40

Yirtual
C++ computer
P B

\ _-Virtual
N ———ETH 7 LISP
s T computer
fﬁ\ Gy / e
\ compiler / ™~

Wirtual - N\\ . II.'ll LISP \
FORTRAN Y T i rnterpreter
computer S S

/ FORTRAN : Dperatlng ﬁ:,.stEm
/ compiler = \(
/ H,-f’#

{Jpcratmm ~.

/.
.rﬂi‘“m% g Macroinstruction \ \ system
i T~/ interpreter \ ‘\I comrnand '"ﬁl
f." 7 / " ﬂ". interprater
(! [4 \\ 1\ \ |
| f Bare]
C compiler | | maching J

\ l\m IH Iﬁh\ o f [!)

Virtual G / \ \

{
-’ Assembler f

compuiter \
\\ Ada g \
compiler Fra
.-'lflr o
/ ‘mrtual\\

% ,ff s gk assembly

e {i‘ L language
Virtual TR —— computer
Ads T
computer

Implementation Methods

* Compilation
— Programs are translated into machine
language
* Pure Interpretation

— Programs are interpreted by another
program known as an interpreter

* Hybrid /Mixing

— A compromise between compilers and
pure interpreters

Implementation Methods

* Interpretation:
— Greater flexibility
— Better diagnostics (error messages)

 Compilation

— Better performance

Implementation Methods

* Compilation * Mixing

Source program Source progrim

| |

Ii_ Cm;]-l;ﬂﬂr:r) (Translator)

|

| r
........ \ S Intermediate program__
. x e
f fr k] L] T Fina i T L
Input——>1 Target program I——> Outpu o\ Virtual machine) > utput
s . [npul -

* |nterpretation

Source program

Input/ k

Interpreter /l-—)- Output

Copyright © 2009 Elsevier, Inc. All rights reserved.

43

/’

{ Sarce Y
\‘ Erogram /
w
Lexizal
analyzer

Lesical uruls

|

Syntax
analyzer

Parse Lregs

Symhbal
table

Intetrediate |
oo gfrn[:rat['.ur |
[and samantic |
analyzer) |

CIptimization

-

Intermediate
coe
w

Code
gEnerator

M achin

languag ‘E,//

Input data

—t-r

Computer

|

Results

Saurce \‘HI
[pragram 4
-

TN

- T

o S /— Inpul dala

f b

| Intorprotor

Results

loptional)

{
S

S pis

i

Sourco }
pragiram

Lexical
analyzor

Lexical unity

Syntax
analyzer

Parse troos

Intermesliate
cocle 7 Ererator

o TR

Intermediain
code

~ Iyt dara

[raler preten

Resulls

Implementation Methods

e Library routines and linking

Fortran program

(Compiler)

A4
Incomplete machine language [ibrary routines

'
(Linker)
l

Machine language program

Copyright © 2009 Elsevier, Inc. All rights reserved.

Post-compilation assembly

Source program

\d

(Compiler)
Assembly language
(Assembler)

Machine language

45

Overview of Compilation

46

Character stream _

loken stream

Parse tree .
"\‘_\\

.-l"'f!

r

Abstract synfax tree or &

other intermediate form s

Modilied &«
intermediate form ~~~__
~a

\ ¥

Target language «—

(e.g., assembler) ~~_

Modified g
target language

(Scanner (lexical analysis) ™Y
- e » Front
Parser (syntax analysis) e
Semantic analysis and A
intermediate code generation =
JE] J
f— —h
r Machine-independent b b
.kcnde improvement {optional) », E
o
& _ ' Back
Target code generation Fapd
N /
4 Machine-specific E
ode improverment (optional)
\ L0 | o T
_—

Copyright © 2009 Elsevier, Inc. All rights reserved.

Overview of Compilation

Lexical analysis

Syntax analysis

Semantic Analysis & intermediate code
generation

Target code generation
Code improvement

Overview of Compilation

48

* Lexical and Syntax Analysis
GCD Program (in C)

int main () f{

int 1 = getint(),
while (1 !'= 7J) {
if (14 > 3) 1 = 1
else 7 = 3] - 1;

}

putint (1) ;

}

Overview of Compilation

* Lexical Analysis

« Scanning and parsing recognize the structure of
the program, groups characters into fokens, the
smallest meaningful units of the program

GCD Program Tokens

int main () {

int 1 = getint () ,] = getint (
while (1 !I= 7) {

if (i > j) i = i - 7
else] = 73 - 1

}
Putint (i) ;

}

Overview of Compilation

* Syntax Analysis

— Context-Free Grammar and Parsing

* Parsing organizes tokens into a parse tree that
represents higher-level constructs in terms of
their constituents

e Potentially recursive rules known as context-
free grammar define the ways in which these
constituents combine

Overview of Compilation

* Context-Free Grammar and Parsing
Example (while loop in C)

iteration-statement — while (expression) statement

statement, in turn, is often a list enclosed in braces:
statement — compound-statement
compound-statement — { block-item-list opt }
where

block-item-list opt — block-item-list

or

block-item-list opt — €

and

block-item-list — block-item

block-item-list — block-item-list block-item
block-item — declaration

block-item — statement

Overview of Compilation

* Context-Free Grammar and Parsing

GCD Program Parse Tree

translation-unit
i1

function-definition

——
i lecl I : N g
- dectamton (L‘u.:rfrlrwn-h_f.__npf coritpound-stateniznt
-~ e | —
- - T - T
.-r'"" f -\-H-L"" . -o-""df -‘-\-\-H"'H-._
Y 3 pointer_opt direct-declarator € { block-item-lisi_opt ¥}
" o —— e
,fr ‘ ___’__-" \q '\-—.'__“:\T_—_._ —
/ o . T e
15 dtrect-declarater (adentifrer-list_ept) block-ttem-list
f ;
FI — -
I -1“‘—\-__
declavation-specifiers ident (rain) ¢ block-item-list block-iter
T — ——
— o — .
— ™~ i . = .
npe-specifier dedaration- specifiers_on! plock-ttem-list plock-item
i —
1 T
int ¢ deciaration A

52 next slidg

Overview of Compilation

* Context-Free Grammar and Parsing

declaration

I —

—— ____———____—_ - -\-___\""-‘——______
leclaration-specifiers init-declarator-list_cpt ;
el =
type-specifier declavation-specifiers_opt mut-declarotor-list
P _fd-rﬁa. H--\"-\-___-_
T T
int ¢ init-declarator-list , init-declarator
= .‘"'a_—i
e
init-declarator declarator = initinlizer
e L T~ _ |
declaratoer = initiaiizer pointer_opt airect-declarator assigninent-expression
- i
TN | 13
pomter_opt direct-declarator ASSI@IME NI -eXPression < ident(j) postfix-expressicn
| 4 o ———
13 e T
¢ ident (1) postitx-expression postfix-expression { Y b
_ “‘\\:““‘“-—H_ = 1 \
postfix-expression € %) ident {gelint) argument-expression-list_op!
' B

1 \ |
ident(getint) argunient-expression-list op! €

53

Overview of Compilation

54

Context-Free Grammar and Parsing

[
T fut fempeved
rwrvalnn -3 | i prassion-ghitheme it
T
whila (expresiion) TR T | EXPrEELn_apr -
by bis
et .'..l:'lr".'-n'.u_fn.-u-\ {01 r .|.-.|.-.-|'|...l.-.ﬂr..!-'r. iberbtie f [aTed i e B
equalify-expression = rela tioral-cxpresson { Mock-wtem-list_opt } postiix-expressron { 1
| | | |
i i i3 Ly
1 1]
idant{1) idant (]} ident (put int) argrartet-exp ress i -l _opd
B : {17
= == - E = E - - I
Lf { SR N) Lt temagmint ales Lt ol 1domt (1)
'8 |
relational-expreison KPRl feare el - e
relsphia i > shuff-expression rApresErve_apt EXProssnNI_ofd §
s 3] H |
] L 1]
identii) ident { i) AFEEFTRONE PP FESEONT ASSIEFT e T Eepressron
- —— “—'|) — =
HRary \.Tlr-"l\.-_\'_‘h‘.lf e f '-Jr'\"n'.lu'u'" .r-._-:l;._l Nl "."|'l\.'i"|.' gl ime b mrary |"|'_|'\I'I"_"_\' 4.::-':'-|!'.‘!"1'|'|:" :.-rl|'i|r-1"\-:r.';'_<_=.'._'\-r|
i | i \
2 10 {2 10
idant{l) = adalidive-express ion idant (]} - addi e -exprassion
audlitie-e X red sror = . r'.'.-l'.'.'r"n'.'u PR e i = TR = ennfiplecatdve-ex predsion
- i i
i e i
| 1 i
1dant (1} 1dant{q) idanc (]l Ideme{ 1}

Overview of Compilation

55

* Syntax Tree - GCD Program Parse Tree

pragram

/\

Index

L oo W =

Symbal

void
int
getint
putint
1

]

call

A

{51

1 .}_.I,H_.

type
type
fline
func :
(2)
(2)

call

(1)—(2)

(2)— (1)

— while
T sy
if (4) (5)
T—
-‘1""1-.
f/ -‘HH""‘H..__

AN /\

(5) (6) (B} 5}

Copyright © 2009 Elsevier, Inc. All rights reserved.

Programming Environments

Programming Environments

The collection of tools used in software development
UNIX

— An older operating system and tool collection

— Nowadays often used through a GUI (e.g., CDE, KDE, or
GNOME) that run on top of UNIX

Borland JBuilder

— An integrated development environment for Java

Microsoft Visual Studio.NET

— Alarge, complex visual environment
— Used to program in C#, Visual BASIC.NET, Jscript, J#, or C++

Programming Environments

58

‘0o0ls
Type Unix examples
Editors Vi, emacs

Pretty printers

cb. indent

Pre-processors (esp. macros)

cpp. 4, watfor

Debuggers

adb, sdb, dbx, gdb

Style checkers

lint, purify

Module management make

Version management SCCS; rch
Assemblers as

Link editors, loaders Id, Id-5s0

Perusal tools More, less, od. nm
Prograim cross-reference cLags

Programming Languages: Trend

Tiobe Programming Community Index

Marmalized fraction of total hits (%)

275
5.0 1
225
20.0
175 1 " .
15.0 4
12.5
N, A
10.0 ._ () /I\ /7 * 7
j 1" .‘I'. s
75 J
5.0 -
. Y F
o
25 L : \-\-‘-\.—’K
_.".H-"-{-

0.0 : : - = : ; — . .

2002 2003 2004 2005 2008 2007 2008 2008 2010

Time
= Java = C++ = MNisual) Basic Pythion Perl

il — PHF CH — Ohjective-C =— Ruby

puaJ|

sadendue] sulwweldoldd

60

Tonamy || St Delta in Position | Programming Language Ruting: Deta Status
Oct 2010 | Oct 2009 Oct 2010 | Oct 2009
1 1 Java 13.166% | -048% | A
2 2 c 17077% | 033% | A
3 4 L] Ot 0.802% | -008% | A
4 3 | PHE §323% | 20%% | A
5 5 (Visual) Basic 5650% | 304% | A
: 5 c= 1963% | <055% | A
: 7 Puthon 1860% | <006% | A
3 12 fttt Objective-C 3.706% | +2354% | A
g g | Perl 2310% | -145% | A
10 10 Rubv 1941% | -051% | A
11 9 u TavaScript 1659% | -137% | A
12 11 | Delphi 1558% | -058% | A
13 17 it Lisp 1084% | <043% | A
14 | TRt | mancacesar 0.820% | <0429 | A
15 15 Pascal 0.771% | +b10% | A
15 18 11} REG (08/400) 0.708% | -0.12% | A
17 R R ARERE R 0.704%. | +0.40% | A
15 14 Huu SAS 0.664% | D.14% | B
19 19 MATLAB 0.627% | +0.05% | B
20 - | TETEEEENET o 0626% | +063% | B

References

61

Books

 Robert W. Sebesta. Concepts of Programming Languages,
Addison Wesley, 2006.

 Michael L. Scott. Programming Language Pragmatics.
Morgan Kaufmann Publishers, 2009

Interesting links

* history:http://en.wikipedia.org/wiki/History of programm
ing _languages

 timeline: http://www.levenez.com/lang/lang a4.pdf

