Programming Languages and Paradigms

Names, Scope, and Bindings

Topics

e Introduction

 Names

e Variables

e The Concept of Binding

e Type Checking

e Strong Typing

* Type Compatibility

e Scope and Lifetime

e Referencing Environments

e Named Constants

Introduction

 Imperative languages are abstractions of von
Neumann architecture

— Memory
— Processor
e Variables characterized by attributes

— Type: to design, must consider scope, lifetime, type
checking, initialization, and type compatibility

Names

 Mnemonic character string used to represent sth.
e Most names are 1dentifiers
 Symbols (like '+') can also be names

e Refer to variables, constants, operations, types,
and so on

Variables

* A variable 1s an abstraction of a memory cell

e Variables can be characterized as a sextuple of
attributes:
— Name
— Address
— Value
— Type
— Lifetime

— Scope

Variables Attributes

e Name - not all variables have them

e Address - the memory address with which it is associated

— A variable may have different addresses at different times during
execution

— A variable may have different addresses at different places in a
program

— If two variable names can be used to access the same memory
location, they are called aliases

— Aliases are created via pointers, reference variables, C and C++
unions

— Aliases are harmful to readability (program readers must remember
all of them)

Variables Attributes (continued)

e Type - determines the range of values of variables
and the set of operations that are defined for values
of that type; in the case of floating point, type also
determines the precision

* Value - the contents of the location with which the
variable 1s associated

o Abstract memory cell - the physical cell or
collection of cells associated with a variable

Variables Attributes (continued)

e The I-value of a variable is its address

e The r-value of a variable i1s its value

" Algol68:

= x : left-hand side value, [-value, its address

* vy :right-hand side value, r-value, its name

= ML:
= C/CH++:

X=y+1;

X:=ly+1;

/

Explicit dereferencing

int x, y, *p; x="p;

The Concept of Binding

* A binding 1s an association between two things,
such as
— aname and the thing it names
— formal parameters and actual parameters

— an operation and a symbol

* Binding time 1s the time at which a binding takes
place.

Possible Binding Times

e Language design time — operator symbols to operations

e Language implementation time — floating point type to a
representation

 Compile time — a variable to a type in C or Java
e Link time — layout of whole program in (virtual) memory
e [oad time — a C static variable to a memory cell

e Runtime — a non-static local variable to a (physical)
memory cell, values to variables

10

Binding Example

C assignment statement

count = count + 5;
Examples of binding
Type of count Compile time

Set of possible values of count
Meaning of operator symbol +
Internal representation of 5

Value of count

Compiler design time
Compile time
Compiler design time

Execution time

11

Static and Dynamic Binding

e A binding 1s static if it first occurs before run time
and remains unchanged throughout program
execution.

* A binding is dynamic 1if it first occurs during
execution or can change during execution of the
program

e Compiled languages tend to have early binding
times for greater efficiency

* Interpreted languages tend to have later binding
times for greater flexibility

12

Binding Example

e gtatic intn =2;
— static binding, value of 2 to variable n

e Int X;

— static binding, integer data type to variable x

e X =72;
— dynamic binding, value of 2 to variable x

13

Type Binding

 How i1s a type specified?
 When does the binding take place?

 [f static, the type may be specitied by either
an explicit or an implicit declaration

14

Explicit/Implicit Declaration

e An explicit declaration is a program statement used
for declaring the types of variables

— C: double sum = 0;

e An implicit declaration is a default mechanism for
specifying types of variables (the first appearance of
the variable in the program)

— Fortran: sum =0
— Perl: $1=10

15

Dynamic Type Binding

 Dynamic Type Binding (JavaScript and PHP)

e Specified through an assignment statement
e.g., JavaScript
list = [2, 4.33, 6, 8];
list = 17.3;
— Advantage: flexibility (generic program units)

— Disadvantages:
* High cost (dynamic type checking and interpretation)

* Type error detection by the compiler is difficult

16

Storage Binding & Lifetime

e Storage Binding

— Allocation - getting a cell from some pool of available
cells

— Deallocation - putting a cell back into the pool

e The lifetime of a variable 1s the time during which
it 1s bound to a particular memory cell

17

Storage Binding & Lifetime

e Storage Allocation mechanisms
— Static

— Stack
— Heap

18

Storage Binding & Lifetime

e Static — objects are given an absolute address that
1s retained throughout the program’s execution

 Static allocation for
— global variable
— static or own variables
— explicit constants (including strings, sets, etc)
— scalars may be stored in the instructions

19

Storage Binding & Lifetime

e Stack — objects are allocated and deallocated in
last-in, first-out order, usually in conjuction with
subroutine calls and returns

e Stack allocation for
— parameters
— local variables
— temporaries

* Why a stack?

— allocate space for recursive routines
— reuse space (in all programming languages)

20

Storage Binding & Lifetime

* Contents of a stack frame (figure in next slide)
— arguments and returns
— local variables
— temporaries
— bookkeeping (saved registers, line number static
link, etc.)

e Local variables and arguments are assigned
fixed OFFSETS from the stack pointer or
frame pointer at compile time

21

Stack for dynamic allocation

Sp —»

fp—>

Direction of stack
growth (usually
lower addresses)

Subroutine D

Subroutine C

Arguments
to called
roulines

Tempt}rarim

Local
variables

Subroutine B

Subroutine B

Miscellaneous
bookkeeping

Return address

Subroutine A

procedure C
D: E

procedure B

if...then Belse C

procedure A
3

—— main prograrm
A

<«— fp (when subroutine
C is running)

22

Storage Binding & Lifetime

 Heap — objects may be allocated and
deallocated at arbitrary times.

e Heap allocation for

— dynamically allocation pieces of linked data
structure

— Objects like strings, lists, and sets, whose size
may changes during execution

* Require a more general (and expensive)
storage management algorithm

23

Heap for dynamic allocation

Heap

N N N N

Allocation request

Figure 3.1 Fragmentation. The shaded blocks are in use; the clear blocks are free. Cross-
hatched space at the ends of in-use blocks represent intemal fragmentation. The discontiguous
free blocks indicate external fragmentation. While there is more than enough totzal free space
remaining to satisfy an allocation request of the illustrated size, no single remaining block is large
enough.

24

Type Checking

* Generalize the concept of operands and
operators to include subprograms and
assignments

o Type checking 1s the activity of ensuring that
the operands of an operator are of compatible

types

25

Type Checking (continued)

* A compatible type 1s one that is either legal
for the operator, or is allowed under language
rules to be implicitly converted, by compiler-
generated code, to a legal type

— This automatic conversion is called a coercion.

* A type error 1s the application of an operator
to an operand of an inappropriate type

26

Type Checking (continued)

e If all type bindings are static, nearly all type
checking can be static

e If type bindings are dynamic, type checking
must be dynamic

e A programming language is strongly typed it
— type errors are always detected

— types of all operands can be determined at
compile time or at run time

27

Strong Typing

e Advantage of strong typing: allows the detection of
the misuses of variables that result in type errors

e Language examples:
— FORTRAN 77 1s not: parameters, EQUIVALENCE
— Pascal 1s not: variant records

— C and C++ are not: parameter type checking can be
avolded; unions are not type checked

— Ada is, almost (UNCHECKED CONVERSION is
loophole)

(Java is similar)

28

Strong Typing (continued)

* Coercion rules strongly affect strong typing--
they can weaken it considerably (C++ versus

Ada)

e Although Java has just half the assignment
coercions of C++, its strong typing is still far
less effective than that of Ada

29

Type Checking Example

Pascal
Function Even (n : integer) : boolean;
begin
Even :=(nmod 2) =0
end;

Lisp
Function Even (n);
begin

Even:=nmod2 =0
end;

30

Name Type Compatibility

* Name type compatibility means the two
variables have compatible types if they are in
either the same declaration or in declarations
that use the same type name

e Easy to implement but highly restrictive:

— Subranges of integer types are not compatible with
integer types

— Formal parameters must be the same type as their
corresponding actual parameters (Pascal)

31

Structure Type Compatibility

o Structure type compatibility means that two
variables have compatible types if their types
have 1dentical structures

e More flexible, but harder to implement

32

Type Compatibility Example

TYPE arr_type = array[1..20] of
integer;

VAR x,y : array[1..20] of integer;

a . arr_type,;

b : RECORD

C : integer;
d : arr_type;
END;

CONST N = 2;
VAR a:array[1..N] of char;
b : array[1..N] of char;

A name equivalence b.d

A structure equivalence b

33

Variable Attributes: Scope

* The scope of a variable is the range of statements
over which it is visible

r

e The nonlocal variables of a program unit are those
that are visible but not declared there

e The scope rules of a language determine how
references to names are associated with variables

34

A
B
C =
L) :
D —
D
L :
E E —
A

Figure 3.5 Static chains, Subroutines A, B, C, D, and E are nested as shown on the left. If the
sequence of nested czlls at run time is A, E, B, D, and C, then the static links in the stack will
look as shown on the right The code for subroutine C can find local objects at known offsets
from the frame pointer; It can find local objects of the surrounding scope, B, by dereferencing its
static chain once and then applying an offset It can find local objects in B's surrounding scope,
A, by dereferencing its static chain twice and then applying an offset.

35

Scope Rules

* The key idea in static scope rules is that
bindings are defined by the physical (lexical)
structure of the program.

* With dynamic scope rules, bindings depend
on the current state of program execution

— They cannot always be resolved by examining the
program because they are dependent on calling
sequences

— To resolve a reference, we use the most recent,
active binding made at run time

36

Scope Rule Example

* program scopes (1nput, output);
var a : 1nteger;
procedure first;
begin a := 1; end;
procedure second;
var a : 1nteger;
begin first; end;
begin
a := 2; second; write(a);
end.

Scope Rule Example

 If static scope rules are in effect (as would be
the case in Pascal), the program prints a 1

e If dynamic scope rules are in effect, the
program prints a 2

 Why the difference? At issue is whether the
assignment to the variable a in procedure first
changes the variable a declared in the main
program or the variable a declared in
procedure second

38

Scope Example

MAIN —
- declaration of x
— SUBH1

call SUB2

—SUB2

- reference to x -

call SUB1

- declaration of x -

MAIN calls SUBT
SUBT1 calls SUB2
SUB2 uses X

39

Scope Example

e Static scoping
— Reference to x is to MAIN's x
 Dynamic scoping

— Reference to x 1s to SUB1's x

e Evaluation of Dynamic Scoping:

— Advantage: convenience

— Disadvantage: poor readability

40

Scope and Lifetime

e Scope and lifetime are sometimes closely
related, but are different concepts

e Consider a static variable in a C or C++
function

41

Referencing Environments

e The referencing environment of a statement is the
collection of all names that are visible in the statement

e In a static-scoped language, it is the local variables
plus all of the visible variables in all of the enclosing
scopes

e A subprogram is active if its execution has begun but
has not yet terminated

e In a dynamic-scoped language, the referencing
environment is the local variables plus all visible
variables in all active subprograms

42

Referencing Environments

Procedure Example is 0
A, B : Integer;

procedure Subl is i
X, Y : Integer;
begin
end; .

procedure Sub?2 is
X: Integer;

b.fc.)cedure Sub3 is7]
X: Integer;
begin

end; L
begin
end;
begin

end;

43

Referencing Environments

void sub1() {
int a, b;

}
void sub2() {

int b, c;
sub1();
]

void main() {
int c, d;
sub2();

}

44

Named Constants

* A named constant 1s a variable that is bound to a
value only when it is bound to storage

e Advantages: readability and modifiability
e Used to parameterize programs

e The binding of values to named constants can be
either static (called manifest constants) or dynamic

 Languages:
— FORTRAN 90: constant-valued expressions
— Ada, C++, and Java: expressions of any kind

45

Variable Initialization

* The binding of a variable to a value at the
time it 1s bound to storage is called
initialization

e Initialization i1s often done on the declaration
statement, e.g., in Java

int sum = 0;

46

Summary

e (ase sensitivity and the relationship of names to
special words represent design issues of names

e Variables are characterized by the sextuples: name,
address, value, type, lifetime, scope

e Binding is the association of attributes with program
entities

e Scalar variables are categorized as: static, stack
dynamic, explicit heap dynamic, implicit heap
dynamic

e Strong typing means detecting all type errors

47

