
Names, Scope, and Bindings

Programming Languages and Paradigms

Names, Scope, and Bindings

Topics

• Introduction

• Names

• Variables

• The Concept of Binding

• Type Checking

2

• Type Checking

• Strong Typing

• Type Compatibility

• Scope and Lifetime

• Referencing Environments

• Named Constants

Introduction

• Imperative languages are abstractions of von

Neumann architecture

– Memory

– Processor

• Variables characterized by attributes

3

• Variables characterized by attributes

– Type: to design, must consider scope, lifetime, type

checking, initialization, and type compatibility

Names

• Mnemonic character string used to represent sth.

• Most names are identifiers

• Symbols (like '+') can also be names

• Refer to variables, constants, operations, types,

4

• Refer to variables, constants, operations, types,

and so on

Variables

• A variable is an abstraction of a memory cell

• Variables can be characterized as a sextuple of

attributes:

– Name

– Address

5

– Address

– Value

– Type

– Lifetime

– Scope

Variables Attributes

• Name - not all variables have them

• Address - the memory address with which it is associated

– A variable may have different addresses at different times during

execution

– A variable may have different addresses at different places in a

program

6

program

– If two variable names can be used to access the same memory

location, they are called aliases

– Aliases are created via pointers, reference variables, C and C++

unions

– Aliases are harmful to readability (program readers must remember

all of them)

Variables Attributes (continued)

• Type - determines the range of values of variables

and the set of operations that are defined for values

of that type; in the case of floating point, type also

determines the precision

• Value - the contents of the location with which the

7

• Value - the contents of the location with which the

variable is associated

• Abstract memory cell - the physical cell or

collection of cells associated with a variable

Variables Attributes (continued)

• The l-value of a variable is its address

• The r-value of a variable is its value

� Algol68: x = y + 1;

� x : left-hand side value, l-value, its address

� y : right-hand side value, r-value, its name

8

� y : right-hand side value, r-value, its name

� ML: x := !y + 1;

� C/C++: int x, y, *p; x = *p;

Explicit dereferencing

The Concept of Binding

• A binding is an association between two things,

such as

– a name and the thing it names

– formal parameters and actual parameters

– an operation and a symbol

9

– an operation and a symbol

• Binding time is the time at which a binding takes

place.

Possible Binding Times

• Language design time – operator symbols to operations

• Language implementation time – floating point type to a

representation

• Compile time – a variable to a type in C or Java

10

• Compile time – a variable to a type in C or Java

• Link time – layout of whole program in (virtual) memory

• Load time – a C static variable to a memory cell

• Runtime – a non-static local variable to a (physical)

memory cell, values to variables

Binding Example

C assignment statement

count = count + 5;

Examples of binding

11

Examples of binding

Binding Time

Type of count Compile time

Set of possible values of count Compiler design time

Meaning of operator symbol + Compile time

Internal representation of 5 Compiler design time

Value of count Execution time

Static and Dynamic Binding

• A binding is static if it first occurs before run time

and remains unchanged throughout program

execution.

• A binding is dynamic if it first occurs during

12

• A binding is dynamic if it first occurs during

execution or can change during execution of the

program

• Compiled languages tend to have early binding

times for greater efficiency

• Interpreted languages tend to have later binding

times for greater flexibility

• static int n = 2;

– static binding, value of 2 to variable n

• int x;

Binding Example

• int x;

– static binding, integer data type to variable x

• x = 2;

– dynamic binding, value of 2 to variable x

13

Type Binding

• How is a type specified?

• When does the binding take place?

• If static, the type may be specified by either

an explicit or an implicit declaration

14

Explicit/Implicit Declaration

• An explicit declaration is a program statement used

for declaring the types of variables

– C: double sum = 0;

• An implicit declaration is a default mechanism for

specifying types of variables (the first appearance of

15

specifying types of variables (the first appearance of

the variable in the program)

– Fortran: sum = 0

– Perl: $i = 10

Dynamic Type Binding

• Dynamic Type Binding (JavaScript and PHP)

• Specified through an assignment statement

e.g., JavaScript

list = [2, 4.33, 6, 8];

16

list = [2, 4.33, 6, 8];

list = 17.3;

– Advantage: flexibility (generic program units)

– Disadvantages:

• High cost (dynamic type checking and interpretation)

• Type error detection by the compiler is difficult

Storage Binding & Lifetime

• Storage Binding

– Allocation - getting a cell from some pool of available

cells

– Deallocation - putting a cell back into the pool

17

• The lifetime of a variable is the time during which

it is bound to a particular memory cell

Storage Binding & Lifetime

• Storage Allocation mechanisms

– Static

– Stack

– Heap

18

– Heap

Storage Binding & Lifetime

• Static – objects are given an absolute address that
is retained throughout the program’s execution

• Static allocation for
– global variable

19

– global variable

– static or own variables

– explicit constants (including strings, sets, etc)

– scalars may be stored in the instructions

Storage Binding & Lifetime

• Stack – objects are allocated and deallocated in
last-in, first-out order, usually in conjuction with
subroutine calls and returns

• Stack allocation for
– parameters

20

– parameters

– local variables

– temporaries

• Why a stack?
– allocate space for recursive routines

– reuse space (in all programming languages)

Storage Binding & Lifetime

• Contents of a stack frame (figure in next slide)

– arguments and returns

– local variables

– temporaries

21

– temporaries

– bookkeeping (saved registers, line number static

link, etc.)

• Local variables and arguments are assigned

fixed OFFSETS from the stack pointer or

frame pointer at compile time

Stack for dynamic allocation

22

Storage Binding & Lifetime

• Heap – objects may be allocated and

deallocated at arbitrary times.

• Heap allocation for

– dynamically allocation pieces of linked data

23

– dynamically allocation pieces of linked data

structure

– Objects like strings, lists, and sets, whose size

may changes during execution

• Require a more general (and expensive)

storage management algorithm

Heap for dynamic allocation

24

Type Checking

• Generalize the concept of operands and

operators to include subprograms and

assignments

• Type checking is the activity of ensuring that

25

• Type checking is the activity of ensuring that

the operands of an operator are of compatible

types

Type Checking (continued)

• A compatible type is one that is either legal

for the operator, or is allowed under language

rules to be implicitly converted, by compiler-

generated code, to a legal type

26

– This automatic conversion is called a coercion.

• A type error is the application of an operator

to an operand of an inappropriate type

Type Checking (continued)

• If all type bindings are static, nearly all type

checking can be static

• If type bindings are dynamic, type checking

must be dynamic

27

must be dynamic

• A programming language is strongly typed if

– type errors are always detected

– types of all operands can be determined at

compile time or at run time

Strong Typing

• Advantage of strong typing: allows the detection of
the misuses of variables that result in type errors

• Language examples:
– FORTRAN 77 is not: parameters, EQUIVALENCE

– Pascal is not: variant records

28

– Pascal is not: variant records

– C and C++ are not: parameter type checking can be
avoided; unions are not type checked

– Ada is, almost (UNCHECKED CONVERSION is
loophole)

(Java is similar)

Strong Typing (continued)

• Coercion rules strongly affect strong typing--

they can weaken it considerably (C++ versus

Ada)

• Although Java has just half the assignment

29

• Although Java has just half the assignment

coercions of C++, its strong typing is still far

less effective than that of Ada

Pascal

Function Even (n : integer) : boolean;

begin

Even := (n mod 2) = 0

end;

Type Checking Example

30

Lisp

Function Even (n);

begin

Even := n mod 2 = 0

end;

Name Type Compatibility

• Name type compatibility means the two

variables have compatible types if they are in

either the same declaration or in declarations

that use the same type name

31

• Easy to implement but highly restrictive:

– Subranges of integer types are not compatible with

integer types

– Formal parameters must be the same type as their

corresponding actual parameters (Pascal)

Structure Type Compatibility

• Structure type compatibility means that two

variables have compatible types if their types

have identical structures

• More flexible, but harder to implement

32

• More flexible, but harder to implement

TYPE arr_type = array[1..20] of

integer;

VAR x, y : array[1..20] of integer;

a : arr_type;

b : RECORD

c : integer;

A name equivalence b.d

Type Compatibility Example

33

c : integer;

d : arr_type;

END;

CONST N = 2;

VAR a : array[1..N] of char;

b : array[1..N] of char;

A structure equivalence b

Variable Attributes: Scope

• The scope of a variable is the range of statements

over which it is visible

• The nonlocal variables of a program unit are those

that are visible but not declared there

34

• The scope rules of a language determine how

references to names are associated with variables

Scope

35

Scope Rules

• The key idea in static scope rules is that

bindings are defined by the physical (lexical)

structure of the program.

• With dynamic scope rules, bindings depend

36

• With dynamic scope rules, bindings depend

on the current state of program execution

– They cannot always be resolved by examining the

program because they are dependent on calling

sequences

– To resolve a reference, we use the most recent,

active binding made at run time

Scope Rule Example

• program scopes (input, output);

var a : integer;

procedure first;

begin a := 1; end;

procedure second;

37

procedure second;

var a : integer;

begin first; end;

begin

a := 2; second; write(a);

end.

Scope Rule Example

• If static scope rules are in effect (as would be
the case in Pascal), the program prints a 1

• If dynamic scope rules are in effect, the
program prints a 2

38

2

• Why the difference? At issue is whether the
assignment to the variable a in procedure first

changes the variable a declared in the main

program or the variable a declared in

procedure second

Scope Example

MAIN

- declaration of x

SUB1

- declaration of x -

...

call SUB2

... MAIN calls SUBMAIN calls SUBMAIN calls SUBMAIN calls SUB1111

SUBSUBSUBSUB1 1 1 1 calls SUBcalls SUBcalls SUBcalls SUB2222

39

SUB2

...

- reference to x -

...

...

call SUB1

…

SUBSUBSUBSUB1 1 1 1 calls SUBcalls SUBcalls SUBcalls SUB2222

SUBSUBSUBSUB2 2 2 2 uses xuses xuses xuses x

Scope Example

• Static scoping

– Reference to x is to MAIN's x

• Dynamic scoping

– Reference to x is to SUB1's x

40

– Reference to x is to SUB1's x

• Evaluation of Dynamic Scoping:

– Advantage: convenience

– Disadvantage: poor readability

Scope and Lifetime

• Scope and lifetime are sometimes closely

related, but are different concepts

• Consider a static variable in a C or C++

function

41

function

Referencing Environments

• The referencing environment of a statement is the

collection of all names that are visible in the statement

• In a static-scoped language, it is the local variables

plus all of the visible variables in all of the enclosing

scopes

42

scopes

• A subprogram is active if its execution has begun but

has not yet terminated

• In a dynamic-scoped language, the referencing

environment is the local variables plus all visible

variables in all active subprograms

Referencing Environments

Procedure Example is
A, B : Integer;
….
procedure Sub1 is

X, Y : Integer;
begin
….

end;
procedure Sub2 is

X: Integer;X: Integer;
….
procedure Sub3 is

X: Integer;
begin
….
end;

begin
….
end;

begin
…..
end;

43

Referencing Environments

void sub1() {

int a, b;

….

}

void sub2() {

int b, c;

….

sub1();

}

void main() {

int c, d;

….

sub2();

}

44

Named Constants

• A named constant is a variable that is bound to a

value only when it is bound to storage

• Advantages: readability and modifiability

• Used to parameterize programs

• The binding of values to named constants can be

45

• The binding of values to named constants can be

either static (called manifest constants) or dynamic

• Languages:

– FORTRAN 90: constant-valued expressions

– Ada, C++, and Java: expressions of any kind

Variable Initialization

• The binding of a variable to a value at the

time it is bound to storage is called

initialization

• Initialization is often done on the declaration

46

• Initialization is often done on the declaration

statement, e.g., in Java

int sum = 0;

Summary

• Case sensitivity and the relationship of names to

special words represent design issues of names

• Variables are characterized by the sextuples: name,

address, value, type, lifetime, scope

• Binding is the association of attributes with program

47

• Binding is the association of attributes with program

entities

• Scalar variables are categorized as: static, stack

dynamic, explicit heap dynamic, implicit heap

dynamic

• Strong typing means detecting all type errors

