
W E E K F O U RW E E K F O U R

Data TypesData Types

Chapter 6 TopicsChapter 6 Topics

I d i• Introduction
• Primitive Data Types
• Character String Types
• User-Defined Ordinal Typesyp
• Array Types
• Associative ArraysAssociative Arrays
• Record Types
• Union Types• Union Types
• Pointer and Reference Types

Copyright © 2006 Addison-Wesley. All rights reserved. 1-2

IntroductionIntroduction

• A data type defines a collection of data values and a
set of predefined operations on those values

• A descriptor is the collection of the attributes of a
variable

• An object represents an instance of a user-defined
(abstract data) type(abstract data) type

• One design issue for all data types: What operations
are defined and how are they specified?are defined and how are they specified?

Copyright © 2006 Addison-Wesley. All rights reserved. 1-3

IntroductionIntroduction

• Primitive data types
– Integer *

• User-defined types
– Enumeration *

– Floating-point
– Decimal

– Subrange *
– Array

– Character *
– Boolean *

– Associative array
– Record

– String / Array of Characters – Variant record
– Pointer

* Ordinal type – Reference type

Copyright © 2006 Addison-Wesley. All rights reserved. 1-4

Data Type in C#Data Type in C#

• Value Type
– Primitive (built-in value)

• Reference Type
– String

• Integer : 8 types
• Floating-point: 2 types

– Array
– Pointer

• Decimal
• Character

B l

– Interface
– Class

• Boolean
– User-defined

E ti

– Delegate

• Enumeration
• Struct

Copyright © 2006 Addison-Wesley. All rights reserved. 1-5

Primitive Data TypesPrimitive Data Types

• Almost all programming languages provide a set of
primitive data types

• Primitive data types: Those not defined in terms of
other data typesyp

Copyright © 2006 Addison-Wesley. All rights reserved. 1-6

Primitive Data Types: IntegerPrimitive Data Types: Integer

• Almost always an exact reflection of the hardware so
the mapping is trivial

• There may be as many as eight different integer types
in a language g g

• Java’s signed integer sizes: byte, short, int,
longg

Copyright © 2006 Addison-Wesley. All rights reserved. 1-7

Primitive Data Types: Floating PointPrimitive Data Types: Floating Point

• Model real numbers, but only as approximations
• Languages for scientific use support at least two g g pp

floating-point types (e.g., float and double;
sometimes more

• Usually exactly like the hardware, but not always
• IEEE Floating Point• IEEE Floating-Point

Standard 754

Copyright © 2006 Addison-Wesley. All rights reserved. 1-8

Primitive Data Types: DecimalPrimitive Data Types: Decimal

• For business applications (money)
– Essential to COBOL
– C# offers a decimal data type

• Store a fixed number of decimal digits g
• Advantage: accuracy
• Disadvantages: limited range wastes memory• Disadvantages: limited range, wastes memory

Copyright © 2006 Addison-Wesley. All rights reserved. 1-9

Primitive Data Types: BooleanPrimitive Data Types: Boolean

• Simplest of all
• Range of values: two elements, one for “true” and g

one for “false”
• Could be implemented as bits, but often as bytesCould be implemented as bits, but often as bytes

– Advantage: readability

Copyright © 2006 Addison-Wesley. All rights reserved. 1-10

Primitive Data Types: CharacterPrimitive Data Types: Character

• Stored as numeric codings
• Most commonly used coding: ASCIIy g
• An alternative, 16-bit coding: Unicode

– Includes characters from most natural languagesIncludes characters from most natural languages
– Originally used in Java
– C# and JavaScript also support UnicodeC# and JavaScript also support Unicode

Copyright © 2006 Addison-Wesley. All rights reserved. 1-11

Character String TypesCharacter String Types

• Values are sequences of characters
• Design issues:g

– Is it a primitive type or just a special kind of array?
– Should the length of strings be static or dynamic?g g y

Copyright © 2006 Addison-Wesley. All rights reserved. 1-12

Character String Types OperationsCharacter String Types Operations

• Typical operations:
– Assignment and copying
– Comparison (=, >, etc.)
– Catenation
– Substring reference
– Pattern matching

Copyright © 2006 Addison-Wesley. All rights reserved. 1-13

Character String Type in Certain Languages

• C and C++
– Not primitive
– Use char arrays and a library of functions that provide

operations
• SNOBOL4 (a string manipulation language)

– Primitive
– Many operations, including elaborate pattern matching

• Java
– Primitive via the String class

Copyright © 2006 Addison-Wesley. All rights reserved. 1-14

Character String Length OptionsCharacter String Length Options

• Static: COBOL, Java’s String class
• Limited Dynamic Length: C and C++y g

– In C-based language, a special character is used to indicate
the end of a string’s characters, rather than maintaining the
length

• Dynamic (no maximum): SNOBOL4, Perl,
JavaScript

• Ada supports all three string length optionspp g g p

Copyright © 2006 Addison-Wesley. All rights reserved. 1-15

Character String Type EvaluationCharacter String Type Evaluation

• Aid to writability
• As a primitive type with static length, they are p yp g y

inexpensive to provide--why not have them?
• Dynamic length is nice, but is it worth the expense?Dynamic length is nice, but is it worth the expense?

Copyright © 2006 Addison-Wesley. All rights reserved. 1-16

User-Defined Ordinal TypesUser Defined Ordinal Types

• An ordinal type is one in which the range of possible
values can be easily associated with the set of
positive integers

• Examples of primitive ordinal types in Javap p yp
– integer
– char
– boolean

Copyright © 2006 Addison-Wesley. All rights reserved. 1-17

Enumeration TypesEnumeration Types

• All possible values, which are named constants, are
provided in the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in more than pp

one type definition, and if so, how is the type of an
occurrence of that constant checked?

– Are enumeration values coerced to integer?
– Any other type coerced to an enumeration type?

Copyright © 2006 Addison-Wesley. All rights reserved. 1-18

Evaluation of Enumerated TypeEvaluation of Enumerated Type

• Aid to readability, e.g., no need to code a color as a
number

• Aid to reliability, e.g., compiler can check:
– operations (don’t allow colors to be added) p ()
– No enumeration variable can be assigned a value outside

its defined range
– Ada, C#, and Java 5.0 provide better support for

enumeration than C++ because enumeration type variables
i h l d i iin these languages are not coerced into integer types

Copyright © 2006 Addison-Wesley. All rights reserved. 1-19

Subrange TypesSubrange Types

• An ordered contiguous subsequence of an ordinal
type
– Example: 12..18 is a subrange of integer type

• Ada’s designg
type Days is (mon, tue, wed, thu, fri, sat, sun);
subtype Weekdays is Days range mon..fri;
subtype Index is Integer range 1..100;

Day1: Days;Day1: Days;
Day2: Weekday;
Day2 := Day1;

Copyright © 2006 Addison-Wesley. All rights reserved. 1-20

Subrange EvaluationSubrange Evaluation

• Aid to readability
– Make it clear to the readers that variables of subrange can

store only certain range of values

• Reliability
– Assigning a value to a subrange variable that is outside the

specified range is detected as an error

Copyright © 2006 Addison-Wesley. All rights reserved. 1-21

Array TypesArray Types

• An array is an aggregate of homogeneous data
elements in which an individual element is identified
by its position in the aggregate, relative to the first
element.

Copyright © 2006 Addison-Wesley. All rights reserved. 1-22

Array Design IssuesArray Design Issues

• What types are legal for subscripts?
• Are subscripting expressions in element references p g p

range checked?
• When are subscript ranges bound?When are subscript ranges bound?
• When does allocation take place?

Wh t i th i b f b i t ?• What is the maximum number of subscripts?
• Can array objects be initialized?
• Are any kind of slices allowed?

Copyright © 2006 Addison-Wesley. All rights reserved. 1-23

Array IndexingArray Indexing

• Indexing (or subscripting) is a mapping from indices
to elements
array_name (index_value_list) → an element

• Index Syntax
– FORTRAN, PL/I, Ada use parentheses

• Ada explicitly uses parentheses to show uniformity between
f d f i ll b b harray references and function calls because both are mappings

– Most other languages use brackets

Copyright © 2006 Addison-Wesley. All rights reserved. 1-24

Arrays Index (Subscript) TypesArrays Index (Subscript) Types

• FORTRAN, C: integer only
• Pascal: any ordinal type (integer, Boolean, char, y yp (g

enumeration)
• Ada: integer or enumeration (includes Boolean andAda: integer or enumeration (includes Boolean and

char)
• Java: integer types only• Java: integer types only
• C, C++, Perl, and Fortran do not specify range

h kichecking
• Java, ML, C# specify range checking

Copyright © 2006 Addison-Wesley. All rights reserved. 1-25

Subscript Binding and Array CategoriesSubscript Binding and Array Categories

• Static: subscript ranges are statically bound
and storage allocation is static (before run-g (
time)
– Advantage: efficiency (no dynamic allocation)Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are statically
bound but the allocation is done at declaration timebound, but the allocation is done at declaration time
– Advantage: space efficiency

Copyright © 2006 Addison-Wesley. All rights reserved. 1-26

Subscript Binding and Array Categories
(continued)

• Stack-dynamic: subscript ranges are dynamically
bound and the storage allocation is dynamic (done at
run-time)
– Advantage: flexibility (the size of an array need not be

known until the array is to be used)
• Fixed heap-dynamic: similar to fixed stack-dynamic:

storage binding is dynamic but fixed after allocation
(i.e., binding is done when requested and storage is
allocated from heap, not stack)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-27

Subscript Binding and Array Categories
(ti d)(continued)

• Heap-dynamic: binding of subscript ranges and
storage allocation is dynamic and can change any
number of times
– Advantage: flexibility (arrays can grow or shrink during

program execution)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-28

Subscript Binding and Array Categories
(continued)
• C and C++ arrays that include static modifier are• C and C++ arrays that include static modifier are

static
C d C++ ith t t ti difi fi d• C and C++ arrays without static modifier are fixed
stack-dynamic

• Ada arrays can be stack-dynamic
• C and C++ provide fixed heap-dynamic arraysp p y y
• C# includes a second array class ArrayList that

provides fixed heap-dynamicprovides fixed heap dynamic
• Perl and JavaScript support heap-dynamic arrays

Copyright © 2006 Addison-Wesley. All rights reserved. 1-29

Array InitializationArray Initialization

• Some language allow initialization at the time of
storage allocation
– C, C++, Java, C# example
int list [] = {4, 5, 7, 83}
– Character strings in C and C++
char name [] = “freddie”;
– Arrays of strings in C and C++
char *names [] = {“Bob”, “Jake”, “Joe”];
– Java initialization of String objects
String[] names = {“Bob”, “Jake”, “Joe”};

Copyright © 2006 Addison-Wesley. All rights reserved. 1-30

Arrays OperationsArrays Operations

• APL provides the most powerful array processingAPL provides the most powerful array processing
operations for vectors and matrixes as well as unary
operators (for example to reverse column elements)operators (for example, to reverse column elements)

• Ada allows array assignment but also catenation
F t id l l ti b th• Fortran provides elemental operations because they
are between pairs of array elements
– For example, + operator between two arrays results in an

array of the sums of the element pairs of the two arrays

Copyright © 2006 Addison-Wesley. All rights reserved. 1-31

SlicesSlices

• A slice is some substructure of an array; nothing
more than a referencing mechanism

• Slices are only useful in languages that have array
operations p

Copyright © 2006 Addison-Wesley. All rights reserved. 1-32

Slice ExamplesSlice Examples

• Fortran 95
Integer, Dimension (10) :: Vector
Integer, Dimension (3, 3) :: Mat
Integer, Dimension (3, 3) :: Cube

Vector (3:6) is a four element array

Copyright © 2006 Addison-Wesley. All rights reserved. 1-33

Slices Examples in Fortran 95Slices Examples in Fortran 95

Copyright © 2006 Addison-Wesley. All rights reserved. 1-34

Accessing Multi-dimensioned ArraysAccessing Multi dimensioned Arrays

• Two common ways:
– Row major order (by rows) – used in most languages
– column major order (by columns) – used in Fortran

Copyright © 2006 Addison-Wesley. All rights reserved. 1-35

Associative ArraysAssociative Arrays

• An associative array is an unordered collection of
data elements that are indexed by an equal number
of values called keys
– User defined keys must be stored

• Design issues: What is the form of references to
elements

Copyright © 2006 Addison-Wesley. All rights reserved. 1-36

Associative Arrays in PerlAssociative Arrays in Perl

• Names begin with %; literals are delimited by
parentheses
%hi_temps = ("Mon" => 77, "Tue" => 79,
“Wed” => 65, …);

• Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;
– Elements can be removed with delete
delete $hi_temps{"Tue"};

Copyright © 2006 Addison-Wesley. All rights reserved. 1-37

Record TypesRecord Types

• A record is a possibly heterogeneous aggregate of• A record is a possibly heterogeneous aggregate of
data elements in which the individual elements are
identified by namesidentified by names

• Design issues:
– What is the syntactic form of references to the field?
– Are elliptical references allowed

Copyright © 2006 Addison-Wesley. All rights reserved. 1-38

Definition of RecordsDefinition of Records

• COBOL uses level numbers to show nested records;
others use recursive definition

• Record Field References
1. COBOL
field_name OF record_name_1 OF ... OF record_name_n
2. Others (dot notation)()
record_name_1.record_name_2. ...

record_name_n.field_name

Copyright © 2006 Addison-Wesley. All rights reserved. 1-39

Definition of Records in COBOLDefinition of Records in COBOL

• COBOL uses level numbers to show nested records;
others use recursive definition
01 EMP-REC.

02 EMP-NAME.
05 FIRST PIC X(20).
05 MID PIC X(10).
05 LAST PIC X(20).

02 HOURLY-RATE PIC 99V99.

Copyright © 2006 Addison-Wesley. All rights reserved. 1-40

Definition of Records in AdaDefinition of Records in Ada

• Record structures are indicated in an orthogonal wayRecord structures are indicated in an orthogonal way
type Emp_Rec_Type is record

Fi t St i (1 20)First: String (1..20);
Mid: String (1..10);
Last: String (1..20);
Hourly Rate: Float;Hourly_Rate: Float;

end record;
E R E R TEmp_Rec: Emp_Rec_Type;

Copyright © 2006 Addison-Wesley. All rights reserved. 1-41

References to RecordsReferences to Records

• Most language use dot notationMost language use dot notation
Emp_Rec.Name

• Fully qualified references must include all recordFully qualified references must include all record
names

• Elliptical references allow leaving out record namesElliptical references allow leaving out record names
as long as the reference is unambiguous, for example
in COBOL
FIRST, FIRST OF EMP-NAME, and FIRST of
EMP-REC are elliptical references to the employee’s
first name

Copyright © 2006 Addison-Wesley. All rights reserved. 1-42

Operations on RecordsOperations on Records

• Assignment is very common if the types are identical
• Ada allows record comparisonp
• Ada records can be initialized with aggregate literals
• COBOL provides MOVE CORRESPONDINGCOBOL provides MOVE CORRESPONDING

– Copies a field of the source record to the corresponding
field in the target recordfield in the target record

Copyright © 2006 Addison-Wesley. All rights reserved. 1-43

Evaluation and Comparison to ArraysEvaluation and Comparison to Arrays

• Straight forward and safe design
• Records are used when collection of data values is

heterogeneous
• Access to array elements is much slower than accessAccess to array elements is much slower than access

to record fields, because subscripts are dynamic
(field names are static)(field names are static)

• Dynamic subscripts could be used with record field
access but it would disallow type checking and itaccess, but it would disallow type checking and it
would be much slower

Copyright © 2006 Addison-Wesley. All rights reserved. 1-44

Unions TypesUnions Types

• A union is a type whose variables are allowed to• A union is a type whose variables are allowed to
store different type values at different times during
executionexecution

• Design issues
– Should type checking be required?
– Should unions be embedded in records?

Copyright © 2006 Addison-Wesley. All rights reserved. 1-45

Discriminated vs. Free UnionsDiscriminated vs. Free Unions

• Fortran, C, and C++ provide union constructs in
which there is no language support for type
checking; the union in these languages is called free
union

• Type checking of unions require that each union
include a type indicator called a discriminant
– Supported by Ada

Copyright © 2006 Addison-Wesley. All rights reserved. 1-46

Ada Union TypesAda Union Types

t Sh i (Ci l T i l R t l)type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);
type Figure (Form: Shape) is record

Filled: Boolean;
Color: Colors;
case Form iscase Form is

when Circle => Diameter: Float;
when Triangle =>

Leftside, Rightside: Integer;
Angle: Float;

when Rectangle => Side1 Side2: Integer;when Rectangle => Side1, Side2: Integer;
end case;

end record;

Copyright © 2006 Addison-Wesley. All rights reserved. 1-47

Ada Union Type IllustratedAda Union Type Illustrated

A discriminated union of three shape variables

Copyright © 2006 Addison-Wesley. All rights reserved. 1-48

Evaluation of UnionsEvaluation of Unions

• Potentially unsafe construct
– Do not allow type checking

• Java and C# do not support unions
– Reflective of growing concerns for safety in programming g g y p g g

language

Copyright © 2006 Addison-Wesley. All rights reserved. 1-49

Pointer and Reference TypesPointer and Reference Types

• A pointer type variable has a range of values that
consists of memory addresses and a special value, nil

• Provide the power of indirect addressing
• Provide a way to manage dynamic memoryProvide a way to manage dynamic memory
• A pointer can be used to access a location in the area

where storage is dynamically created (usually calledwhere storage is dynamically created (usually called
a heap)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-50

Pointer OperationsPointer Operations

T f d l i i d• Two fundamental operations: assignment and
dereferencing
A i i d i i bl ’ l• Assignment is used to set a pointer variable’s value
to some useful address
D f i i ld h l d h l i• Dereferencing yields the value stored at the location
represented by the pointer’s value

D f i b li it i li it– Dereferencing can be explicit or implicit
– C++ uses an explicit operation via *
j = *ptrj = *ptr
sets j to the value located at ptr

Copyright © 2006 Addison-Wesley. All rights reserved. 1-51

Pointer Assignment IllustratedPointer Assignment Illustrated

The assignment operation j = *ptr

Copyright © 2006 Addison-Wesley. All rights reserved. 1-52

Problems with PointersProblems with Pointers

• Dangling pointers (dangerous)• Dangling pointers (dangerous)
– A pointer points to a heap-dynamic variable that has been

de allocatedde-allocated
• Lost heap-dynamic variable

A ll t d h d i i bl th t i l– An allocated heap-dynamic variable that is no longer
accessible to the user program (often called garbage)

• Pointer p1 is set to point to a newly created heap-dynamic• Pointer p1 is set to point to a newly created heap-dynamic
variable

• Pointer p1 is later set to point to another newly created heap-
dynamic variable

Copyright © 2006 Addison-Wesley. All rights reserved. 1-53

Pointers in C and C++Pointers in C and C

E l fl ibl b b d i h• Extremely flexible but must be used with care
• Pointers can point at any variable regardless of when

i ll dit was allocated
• Used for dynamic storage management and

dd iaddressing
• Pointer arithmetic is possible
• Explicit dereferencing and address-of operators
• Domain type need not be fixed (void *)
• void * can point to any type and can be type

checked (cannot be de-referenced)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-54

Pointer Arithmetic in C and C++Pointer Arithmetic in C and C

fl ff[100]float stuff[100];
float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivalent to stuff[i] and p[i](p) q stu [] p[]

Copyright © 2006 Addison-Wesley. All rights reserved. 1-55

Reference TypesReference Types

• C++ includes a special kind of pointer type called a
reference type that is used primarily for formal
parameters
– Advantages of both pass-by-reference and pass-by-value

• Java extends C++’s reference variables and allows
them to replace pointers entirelyp p y
– References refer to call instances

• C# includes both the references of Java and theC# includes both the references of Java and the
pointers of C++

Copyright © 2006 Addison-Wesley. All rights reserved. 1-56

Evaluation of PointersEvaluation of Pointers

• Dangling pointers and dangling objects are problems
as is heap management

• Pointers are like goto's--they widen the range of
cells that can be accessed by a variabley

• Pointers or references are necessary for dynamic data
structures--so we can't design a language withoutstructures so we can t design a language without
them

Copyright © 2006 Addison-Wesley. All rights reserved. 1-57

SummarySummary

• The data types of a language are a large part of what
determines that language’s style and usefulness
Th i iti d t t f t i ti l i l d• The primitive data types of most imperative languages include
numeric, character, and Boolean types

• The user defined enumeration and subrange types are• The user-defined enumeration and subrange types are
convenient and add to the readability and reliability of
programsp g

• Arrays and records are included in most languages
• Pointers are used for addressing flexibility and to controlPointers are used for addressing flexibility and to control

dynamic storage management

Copyright © 2006 Addison-Wesley. All rights reserved. 1-58

Assignment: hw4Assignment: hw4

• Data types in C, C++, C#
– Primitive data types

• name, range value, size (bits/bytes)
• operations

– User-defined data types
• How to specify data types?

i i• Programming in C or C++
– union & enumeration : calculate perimeter of circle, triangle, rectangle

i iti li f t i d b i i t d i d– array: initialize array of string, and access by using pointer and index
– struct : array of students, input and display student information

Copyright © 2006 Addison-Wesley. All rights reserved. 1-59

