
W E E K F I V E

Expressions and Expressions and

Assignment Statements

Chapter 7 Topics

• Introduction

• Arithmetic Expressions

• Overloaded Operators

• Type Conversions

Copyright © 2006 Addison-Wesley. All rights reserved. 1-2

• Type Conversions

• Relational and Boolean Expressions

• Short-Circuit Evaluation

• Assignment Statements

• Mixed-Mode Assignment

Introduction

• Expressions are the fundamental means of specifying

computations in a programming language

• To understand expression evaluation, need to be

familiar with the orders of operator and operand

Copyright © 2006 Addison-Wesley. All rights reserved. 1-3

familiar with the orders of operator and operand

evaluation

• Essence of imperative languages is dominant role of

assignment statements

Arithmetic Expressions

• Arithmetic evaluation was one of the motivations for

the development of the first programming languages

• Arithmetic expressions consist of operators,

operands, parentheses, and function calls

Copyright © 2006 Addison-Wesley. All rights reserved. 1-4

operands, parentheses, and function calls

Arithmetic Expressions

Copyright © 2006 Addison-Wesley. All rights reserved. 1-5

Arithmetic Expressions: Operators

• A unary operator has one operand

• A binary operator has two operands

• A ternary operator has three operands

Copyright © 2006 Addison-Wesley. All rights reserved. 1-6

Arithmetic Expressions: Design Issues

• order of operator evaluation

– operator precedence rules

– operator associativity rules

– Parentheses

Copyright © 2006 Addison-Wesley. All rights reserved. 1-7

– Parentheses

– Conditional expressions

• order of operand evaluation

– side effects

Arithmetic Expressions: Operator Evaluation

Order

• The operator precedence rules for expression
evaluation define the order in which “adjacent”
operators of different precedence levels are
evaluated

• The operator associativity rules for expression

Copyright © 2006 Addison-Wesley. All rights reserved. 1-8

• The operator associativity rules for expression
evaluation define the order in which adjacent
operators with the same precedence level are
evaluated

Arithmetic Expressions: Operator Precedence Rules

• Binary operators are mostly infix.

• Some are prefix in Perl.

• Typical precedence levels

– parentheses

– unary operators

Copyright © 2006 Addison-Wesley. All rights reserved. 1-9

– unary operators

– ** (if the language supports it)

– *, /

– +, -

Arithmetic Expressions: Operator Precedence Rules

• Precedence, associativity (see Figure 6.1)

– C has 15 levels - too many to remember

– Pascal has 3 levels - too few for good semantics

– Fortran has 8

Copyright © 2006 Addison-Wesley. All rights reserved. 1-10

– Fortran has 8

– Ada has 6

• Ada puts and & or at same level

– Lesson: when unsure, use parentheses!

Copyright © 2006 Addison-Wesley. All rights reserved. 1-11

Arithmetic Expressions: Operator Associativity

Rule

• Typical associativity rules

– Left to right, except **, which is right to left

– Sometimes unary operators associate right to left (e.g., in

FORTRAN)

• APL is different; all operators have equal precedence

Copyright © 2006 Addison-Wesley. All rights reserved. 1-12

• APL is different; all operators have equal precedence

and all operators associate right to left

• Precedence and associativity rules can be overriden

with parentheses

Arithmetic Expressions: Conditional

Expressions

• Conditional Expressions

– C-based languages (e.g., C, C++)

exp1 ? expr2 : exp3

– An example:

Copyright © 2006 Addison-Wesley. All rights reserved. 1-13

– An example:

average = (count == 0)? 0 : sum / count

– Evaluates as if written like

if (count == 0) average = 0

else average = sum /count

Arithmetic Expressions: Operand Evaluation

Order

• Operand evaluation order

1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory; sometimes

the constant is in the machine language instruction

3. Parenthesized expressions: evaluate all operands and

Copyright © 2006 Addison-Wesley. All rights reserved. 1-14

3. Parenthesized expressions: evaluate all operands and

operators first

Arithmetic Expressions: Potentials for Side

Effects

• Functional side effects: when a function changes a

two-way parameter or a non-local variable

• Problem with functional side effects:

– When a function referenced in an expression alters another

Copyright © 2006 Addison-Wesley. All rights reserved. 1-15

– When a function referenced in an expression alters another

operand of the expression; e.g., for a parameter change:

a = 10;

/* assume that fun changes its parameter */

b = a + fun(a);

Functional Side Effects

• Two possible solutions to the problem

1. Write the language definition to disallow functional side

effects

• No two-way parameters in functions

• No non-local references in functions

Copyright © 2006 Addison-Wesley. All rights reserved. 1-16

• No non-local references in functions

• Advantage: it works!

• Disadvantage: inflexibility of two-way parameters and non-

local references

2. Write the language definition to demand that operand

evaluation order be fixed

• Disadvantage: limits some compiler optimizations

Overloaded Operators

• Use of an operator for more than one purpose is

called operator overloading

• Some are common (e.g., + for int and float)

• Some are potential trouble (e.g., * in C and C++)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-17

• Some are potential trouble (e.g., * in C and C++)

– Loss of compiler error detection (omission of an operand

should be a detectable error)

– Some loss of readability

– Can be avoided by introduction of new symbols (e.g.,

Pascal’s div for integer division)

Overloaded Operators (continued)

• C++ and Ada allow user-defined overloaded

operators

• Potential problems:

– Users can define nonsense operations

Copyright © 2006 Addison-Wesley. All rights reserved. 1-18

– Users can define nonsense operations

– Readability may suffer, even when the operators make

sense

Type Conversions

• A narrowing conversion is one that converts an

object to a type that cannot include all of the values

of the original type

– e.g., float to int

Copyright © 2006 Addison-Wesley. All rights reserved. 1-19

• A widening conversion is one in which an object is

converted to a type that can include at least

approximations to all of the values of the original

type

– e.g., int to float

Type Conversions: Mixed Mode

• A mixed-mode expression is one that has operands of
different types

• A coercion is an implicit type conversion

• Disadvantage of coercions:

– They decrease in the type error detection ability of the

Copyright © 2006 Addison-Wesley. All rights reserved. 1-20

– They decrease in the type error detection ability of the
compiler

• In most languages, all numeric types are coerced in
expressions, using widening conversions

• In Ada, there are virtually no coercions in
expressions

Explicit Type Conversions

• Explicit Type Conversions

• Called casting in C-based language

• Examples
– C: (int) angle

Copyright © 2006 Addison-Wesley. All rights reserved. 1-21

Type Conversions: Errors in Expressions

• Causes

– Inherent limitations of arithmetic

e.g., division by zero

– Limitations of computer arithmetic

Copyright © 2006 Addison-Wesley. All rights reserved. 1-22

e.g. overflow

• run-time errors are called exceptions

Relational and Boolean Expressions

• Relational Expressions

– Use relational operators and operands of various types

– Evaluate to some Boolean representation

– Operator symbols used vary somewhat among languages

(!=, /=, .NE., <>, #)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-23

(!=, /=, .NE., <>, #)

Relational and Boolean Expressions

• Boolean Expressions

– Operands are Boolean and the result is Boolean

– Example operators

Copyright © 2006 Addison-Wesley. All rights reserved. 1-24

FORTRAN 77 FORTRAN 90 C Ada

.AND. and && and

.OR. or || or

.NOT. not ! not

xor

Relational and Boolean Expressions: No

Boolean Type in C

• C has no Boolean type--it uses int type with 0 for

false and nonzero for true

• One odd characteristic of C’s expressions:

a < b < c is a legal expression, but the result is

Copyright © 2006 Addison-Wesley. All rights reserved. 1-25

a < b < c is a legal expression, but the result is

not what you might expect:

– Left operator is evaluated, producing 0 or 1

– The evaluation result is then compared with the third

operand (i.e., c)

Relational and Boolean Expressions: Operator

Precedence

• Precedence of C-based operators

postfix ++, --

unary +, -, prefix ++, --, !

*,/,%

Copyright © 2006 Addison-Wesley. All rights reserved. 1-26

binary +, -

<, >, <=, >=

=, !=

&&

||

Short Circuit Evaluation

• An expression in which the result is determined
without evaluating all of the operands and/or
operators

• Example: (13*a) * (b/13–1)

If a is zero, there is no need to evaluate (b/13-1)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-27

If a is zero, there is no need to evaluate (b/13-1)

• Problem with non-short-circuit evaluation
index = 1;

while (index < length) && (LIST[index] != value)

index++;

– When index=length, LIST [index] will cause an indexing
problem (assuming LIST has length -1 elements)

Short Circuit Evaluation (continued)

• C, C++, and Java: use short-circuit evaluation for the

usual Boolean operators (&& and ||), but also

provide bitwise Boolean operators that are not short

circuit (& and |)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-28

• Ada: programmer can specify either (short-circuit is

specified with and then and or else)

• Short-circuit evaluation exposes the potential

problem of side effects in expressions

e.g. (a > b) || (b++ / 3)

Assignment Statements

• Simple assignments

• Conditional targets

• Compound assignment operators

• Unary assignment operators

Copyright © 2006 Addison-Wesley. All rights reserved. 1-29

• Unary assignment operators

• Assignment as an expression

Assignment Statements: Simple Assignment

• The general syntax
<target_var> <assign_operator> <expression>

• The assignment operator

= FORTRAN, BASIC, PL/I, C, C++, Java

Copyright © 2006 Addison-Wesley. All rights reserved. 1-30

:= ALGOLs, Pascal, Ada

• = can be bad when it is overloaded for the relational

operator for equality

Assignment Statements: Conditional Targets

• Conditional targets (C, C++, and Java)
(flag)? total : subtotal = 0

Which is equivalent to

Copyright © 2006 Addison-Wesley. All rights reserved. 1-31

if (flag)

total = 0

else

subtotal = 0

Assignment Statements: Compound Operators

• A shorthand method of specifying a commonly
needed form of assignment

• Introduced in ALGOL; adopted by C

• Example

Copyright © 2006 Addison-Wesley. All rights reserved. 1-32

a = a + b

is written as

a += b

Assignment Statements: Unary Assignment Operators

• Unary assignment operators in C-based languages

combine increment and decrement operations with

assignment

• Examples

Copyright © 2006 Addison-Wesley. All rights reserved. 1-33

sum = ++count (count incremented, added to sum)

sum = count++ (copy to sum,count incremented)

count++ (count incremented)

-(count++) (count incremented then negated)

Assignment Statements: Assignment as an Expression

• In C, C++, and Java, the assignment statement

produces a result and can be used as operands

• An example:

while ((ch = getchar())!= EOF){…}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-34

ch = getchar() is carried out; the result

(assigned to ch) is used as a conditional value for the

while statement

Mixed-Mode Assignment

• Assignment statements can also be mixed-mode,

for example

int a, b;

float c;

c = a / b;

Copyright © 2006 Addison-Wesley. All rights reserved. 1-35

c = a / b;

• In Pascal, integer variables can be assigned to real

variables, but real variables cannot be assigned to

integers

• In Java, only widening assignment coercions are

done

• In Ada, there is no assignment coercion

Summary

• Expressions

• Operator precedence and associativity

• Operator overloading

• Assignment statements

Copyright © 2006 Addison-Wesley. All rights reserved. 1-36

• Assignment statements

• Mixed-type expressions

• Various forms of assignment

