
W E E K F I V E

Control Flow

Chapter 8 Topicsp p

I d i• Introduction
• Selection Statements
• Iterative Statements
• Unconditional BranchingUnconditional Branching
• Conclusions

Copyright © 2006 Addison-Wesley. All rights reserved. 1-2

Control Flow

L l f C l FlLevels of Control Flow
• Within expressions
• Among program units
• Among program statementsAmong program statements

– Sequencing
– Selection– Selection
– Iteration

Copyright © 2006 Addison-Wesley. All rights reserved. 1-3

Selection Statements

A l i id h• A selection statement provides the means
of choosing between two or more paths of

iexecution
• Two general categories:

– Two-way selectors
– Multiple-way selectors

Copyright © 2006 Addison-Wesley. All rights reserved. 1-4

Two-Way Selection Statementsy

G l f• General form:
if control_expression
then clause
else clause

• Design Issues:
– What is the form and type of the control

expression?
– How are the then and else clauses specified?

H h ld h i f d l b– How should the meaning of nested selectors be
specified?

Copyright © 2006 Addison-Wesley. All rights reserved. 1-5

Two-Way Selection: C Examplesy p

if (the conditional expression is true) {if (the conditional expression is true) {
perform these statements

}
else {else {

perform these statements if the conditional is false
}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-6

Two-Way Selection: Algol Examplesy g p

ALGOL 60• ALGOL 60:
if (boolean_expr)

then statement (then clause)
else statement (else clause)else statement (else clause)

• The statements could be single or
compoundcompound

Copyright © 2006 Addison-Wesley. All rights reserved. 1-7

Nesting Selectorsg

J l• Java example
if (sum == 0)

if (count == 0)
result = 0;

else result = 1;

• Which if gets the else? g
• Java's static semantics rule: else matches

with the nearest ifwith the nearest if

Copyright © 2006 Addison-Wesley. All rights reserved. 1-8

Nesting Selectors (continued)g ()

T f l i i• To force an alternative semantics,
compound statements may be used:

if (sum == 0) {

if (count == 0)
result = 0;

}
else result = 1;

• The above solution is used in C, C++, and C#
• Perl requires that all then and else clauses to be

compound

Copyright © 2006 Addison-Wesley. All rights reserved. 1-9

Nesting Selectors (continued)

C/C++/Java

if (0) {

Ada

if 0 thif (sum == 0) {
if (count == 0)

lt 0

if sum = 0 then
if count = 0 then

lt 0result = 0;
}
l

result := 0;
end if;

lelse
result = 1;

else
result := 1;

end if;

Copyright © 2006 Addison-Wesley. All rights reserved. 1-10

Multiple-Way Selection Statementsp y

All th l ti f f b• Allow the selection of one of any number
of statements or statement groups
D i I• Design Issues:
1. What is the form and type of the control

expression?expression?
2. How are the selectable segments specified?
3 Is execution flow through the structure3. Is execution flow through the structure

restricted to include just a single selectable
segment?

4. What is done about unrepresented expression
values?

Copyright © 2006 Addison-Wesley. All rights reserved. 1-11

Multiple-Way Selection: Examplesp y p

C’s switch statementC s switch statement

it h (i) {switch (expression) {
case expr_1: stmt_1;
…
case expr_n: stmt_n;
[d f l 1][default: stmt_n+1]

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-12

Multiple-Way Selection: Examplesp y p

• Design choices for C’s switch statementDesign choices for C s switch statement
1. Control expression can be only an integer type
2. Selectable segments can be statement S g

sequences, blocks, or compound statements
3. Any number of segments can be executed in

f h (hone execution of the construct (there is no
implicit branch at the end of selectable
segments)segments)

4. default clause is for unrepresented values (if
there is no default, the whole statement
does nothing)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-13

Multiple-Way Selection: Examples

C C#C
switch (index) {

case 1:

C#
switch (value) {
case 1: case :

case 3: odd += 1;
sumodd += index;

positive++;
break;

case -1:

case 2:
case 4 + 1

case -1:
negative++;
break;

break;

case 4: even +=1;
sumeven += index;

case 0:
goto case 1;

default:break;
default:

printf(“error”);

default:
Console.write(“error”);

}

b ea ;

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-14

Multiple-Way Selection: Examplesp y p

Th P l t t t• The Pascal case statement

CASE ch OFCASE ch OF
‘A’,’a’: Writeln(‘ch = A’);
‘B’,’b’: Writeln(‘ch = B’);
‘C’,’c’: Writeln(‘ch = C’);
ELSE Writeln (‘Try Again!’);

END;END;

More reliable than C’s switch (once a
stmt_sequence execution is completed, control is
passed to the first statement after the case
statement

Copyright © 2006 Addison-Wesley. All rights reserved. 1-15

statement

Multiple-Way Selection: Examplesp y p

JJava
switch(code)
{
case 'A': discount = 0.0;

break;
case 'B': discount = 0 1;case B : discount = 0.1;

break;
case 'C': discount = 0.2;

break;
default: discount = 0.3;

} }
System.out.println("discount is:

" + discount);

Copyright © 2006 Addison-Wesley. All rights reserved. 1-16

Multiple-Way Selection Using ifp y g

• Multiple Selectors can appear as direct p pp
extensions to two-way selectors, using
else-if clauses, for example in Ada:

if count<10 then
bag1:=True;

if count<10 then
bag1:=True;bag1:=True;

elsif count <100 then
bag2:=True;

bag1: True;
else

if count <100 then
bag2:=True;

elsif count <1000 then
bag3:=True;

end if

g ;
else

if count <1000 then
bag3:=True;end if g

end if;
end if;

end if;

Copyright © 2006 Addison-Wesley. All rights reserved. 1-17

Iterative Statements

Th d i f• The repeated execution of a statement or
compound statement is accomplished
i h b i i ieither by iteration or recursion

• General design issues for iteration control
statements:
1. How is iteration controlled?
2. Where is the control mechanism in the loop?

Copyright © 2006 Addison-Wesley. All rights reserved. 1-18

Iterative Statements

T l i• Two general categories:
– Counter-Controlled Loops
– Logically-Controlled Loops

• Pre-test
• Post-test

• User-Located Loop Control Mechanisms
– Break
– Continue

It ti B d D t St t• Iteration Based on Data Structures

Copyright © 2006 Addison-Wesley. All rights reserved. 1-19

Counter-Controlled Loopsp

• A counting iterative statement has a loopA counting iterative statement has a loop
variable, and a means of specifying the initial and
terminal, and stepsize values

• Design Issues:
1. What are the type and scope of the loop variable?
2. What is the value of the loop variable at loop

termination?termination?
3. Should it be legal for the loop variable or loop

parameters to be changed in the loop body, and if so,
d h h ff l l?does the change affect loop control?

4. Should the loop parameters be evaluated only once, or
once for every iteration?

Copyright © 2006 Addison-Wesley. All rights reserved. 1-20

y

Iterative Statements

P l’• Pascal’s for statement
for variable := initial (to|downto) final do

statementstatement

• Design choices:g
1. Loop variable must be an ordinal type of usual scope
2. After normal termination, loop variable is undefined
3. The loop variable cannot be changed in the loop; the

loop parameters can be changed, but they are evaluated
just once, so it does not affect loop controlj , p

4. Just once

Copyright © 2006 Addison-Wesley. All rights reserved. 1-21

Iterative Statements: Examplesp

C’• C’s for statement
for ([expr_1] ; [expr_2] ; [expr_3]) statement

Th i b h l• The expressions can be whole statements, or even
statement sequences, with the statements
separated by commasseparated by commas
– The value of a multiple-statement expression is the value

of the last statement in the expression
• There is no explicit loop variable
• Everything can be changed in the loop
• The first expression is evaluated once, but the

other two are evaluated with each iteration

Copyright © 2006 Addison-Wesley. All rights reserved. 1-22

Iterative Statements: Examplesp

f (i iti li d diti l i difi)for(var initialized; conditional expression; var modifier)
{

perform statements while the conditional expression is true
}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-23

Iterative Statements: Examplesp

C
for (index = 0; index <= 10; index++)

sum = sum + list[index];sum sum + list[index];

for (count1 = 0; count2 = 1.0;
count1 <= 10 && count2 <= 100.0;
sum = ++count1 + count2, count2 *= 2.5);

C++
for (int count = 0; count <= len; count++)for (int count 0; count < len; count++)
{ ... }

Copyright © 2006 Addison-Wesley. All rights reserved. 1-24

Iterative Statements: Examplesp

C diff f C i• C++ differs from C in two ways:
1. The control expression can also be Boolean
2. The initial expression can include variable

definitions (scope is from the definition to the
end of the loop body)end of the loop body)

• Java and C#
– Differs from C++ in that the control

expression must be Boolean

Copyright © 2006 Addison-Wesley. All rights reserved. 1-25

Iterative Statements: Logically-Controlled
LLoops

R i i l i b d B l• Repetition control is based on a Boolean
• Design issues:

– Pre-test or post-test?
– Should the logically controlled loop be a

special case of the counting loop statement ?
expression rather than a counter

• General forms:
while (ctrl expr) do_ p

loop body loop body
while (ctrl expr)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-26

e (ct _e p)

Iterative Statements: Logically-Controlled
LLoops

hil (diti l i t) d {while(conditional expr is true)
{

perform the statements
located between the braces

do {
perform the statements
located between the braces

}located between the braces
}

}
while(conditional expr is true)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-27

Iterative Statements: Logically-Controlled
L E lLoops: Examples

• Pascal has separate pre-test and post-test logicalPascal has separate pre test and post test logical
loop statements (while-do and repeat-until)

• C and C++ also have both, but the control
expression for the post-test version is treated just
like in the pre-test case (while do and do while)like in the pre-test case (while-do and do- while)

• Java is like C except the control expression must beJava is like C, except the control expression must be
Boolean (and the body can only be entered at the
beginning -- Java has no goto

Copyright © 2006 Addison-Wesley. All rights reserved. 1-28

Iterative Statements: Logically-Controlled
L E lLoops: Examples

Ad h t t i b t t t t• Ada has a pretest version, but no post-test

FORTRAN 77 d 90 h i h• FORTRAN 77 and 90 have neither

• Perl has two pre-test logical loops, while and
until, but no post-test logical loop

Copyright © 2006 Addison-Wesley. All rights reserved. 1-29

Iterative Statements: Iteration Based on
D t St tData Structures

• Number of elements of in a data structure controlNumber of elements of in a data structure control
loop iteration

• Control mechanism is a call to an iterator function
that returns the next element in some chosen
order if there is one; else loop is terminateorder, if there is one; else loop is terminate

• C's for can be used to build a user-definedC s for can be used to build a user defined
iterator:
for (p=root; p==NULL; traverse(p))(p ; p ; (p))
{ ... }

Copyright © 2006 Addison-Wesley. All rights reserved. 1-30

Iterative Statements: Iteration Based on
D t St t (ti d)Data Structures (continued)

C#’s foreach statement iterates on the• C# s foreach statement iterates on the
elements of arrays and other collections:

String[] strList = {“Bob”, “Carol”, “Ted”};
foreach (String name in strList)foreach (String name in strList)

Console.WriteLine (“Name: {0}”, name);

• The notation {0} indicates the position in
the string to be displayedthe string to be displayed

Copyright © 2006 Addison-Wesley. All rights reserved. 1-31

User-Located Control Mechanisms

S i i i i f h• Sometimes it is convenient for the
programmers to decide a location for

lcontrol
Control mechanism
• break
• continuecontinue
• goto (an unconditional branching)

t (i f ti)• return (use in function)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-32

User-Located Control Mechanisms

b kbreak
• C , C++, and Java: break statement
• Unconditional; for any loop or switch; one level

only
d C h l b l d• Java and C# have a labeled break statement:

control transfers to the label
ticontinue

• An alternative: continue statement; it skips the
i d f thi it ti b t d t it thremainder of this iteration, but does not exit the

loop

Copyright © 2006 Addison-Wesley. All rights reserved. 1-33

User-Located Control Mechanisms: Examplesp

while (sum<1000)
{

while (sum<1000)
{

getnext(value);
if (value<0)

getnext(value);
if (value<0)

continue;
sum += value;

break;
sum += value;

} }

Copyright © 2006 Addison-Wesley. All rights reserved. 1-34

Unconditional Branchingg

T f ti t l t ifi d l i• Transfers execution control to a specified place in
the program

• Represented one of the most heated debates inRepresented one of the most heated debates in
1960’s and 1970’s

• Well-known mechanism: goto statement
• Major concern: Readability
• Some languages do not support goto statement

(M d l 2 d J)(e.g., Module-2 and Java)
• C# offers goto statement (can be used in switch

statements)statements)
• Loop exit statements are restricted and somewhat

camouflaged goto’s

Copyright © 2006 Addison-Wesley. All rights reserved. 1-35

g

Conclusion

V i f l l• Variety of statement-level structures
• Choice of control statements beyond

selection and logical pretest loops is a
trade-off between language size and
writability

• Functional and logic programming g p g g
languages are quite different control
structures

Copyright © 2006 Addison-Wesley. All rights reserved. 1-36

