
Week 7

SubprogramsSubprograms

Chapter 9 Topics

• Introduction

• Fundamentals of Subprograms

• Design Issues for Subprograms

• Local Referencing Environments

• Parameter-Passing Methods

Copyright © 2006 Addison-Wesley. All rights reserved. 1-2

• Parameter-Passing Methods

• Overloaded Subprograms

• Generic Subprograms

• Design Issues for Functions

• User-Defined Overloaded Operators

• Coroutines

Introduction

• Two fundamental abstraction facilities

– Process abstraction

• Emphasized from early days

– Data abstraction

• Emphasized in the1980s

Copyright © 2006 Addison-Wesley. All rights reserved. 1-3

• Emphasized in the1980s

Fundamentals of Subprograms

• Each subprogram has a single entry point

• The calling program is suspended during
execution of the called subprogram

• Control always returns to the caller when

Copyright © 2006 Addison-Wesley. All rights reserved. 1-4

• Control always returns to the caller when
the called subprogram’s execution
terminates

Basic Definitions

• A subprogram definition describes the interface to
and the actions of the subprogram abstraction

• A subprogram call is an explicit request that the
subprogram be executed

• A subprogram header is the first part of the
definition, including the name, the kind of

Copyright © 2006 Addison-Wesley. All rights reserved. 1-5

definition, including the name, the kind of
subprogram, and the formal parameters

• The parameter profile (aka signature) of a
subprogram is the number, order, and types of its
parameters

• The protocol is a subprogram’s parameter profile
and, if it is a function, its return type

Examples

float divider(int x, int y)

{

return (float)x/y;

}

subprogram header

signature / parameter profile

su
b
p
ro

g
ra

m
 d

ef
in

it
io

n

return type

}

void main()

{

float result;

int a=5, b=2;

result = divider(a/b);

printf(“%.2f”, result);

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-6

subprogram call

su
b
p
ro

g
ra

m
 d

ef
in

it
io

n

Basic Definitions (continued)

• Function declarations in C and C++ are often
called prototypes

• A subprogram declaration provides the protocol,
but not the body, of the subprogram

• A formal parameter is a dummy variable listed in

Copyright © 2006 Addison-Wesley. All rights reserved. 1-7

• A formal parameter is a dummy variable listed in
the subprogram header and used in the
subprogram

• An actual parameter represents a value or address
used in the subprogram call statement

Examples

float divider(int, int);

int main()

{

float result;

int a=5, b=2;

subprogram declaration

result = divider(a/b);

printf(“%.2f”, result);

}

float divider(int x, int y)

{

return (float)x/y;

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-8

formal parameter

formal parameter

Formal Parameter Default Values

• In certain languages (e.g., C++, Ada),
formal parameters can have default values
(if not actual parameter is passed)

– In C++, default parameters must appear last
because parameters are positionally associated

Copyright © 2006 Addison-Wesley. All rights reserved. 1-9

because parameters are positionally associated

• C# methods can accept a variable number
of parameters as long as they are of the
same type

Procedures and Functions

• There are two categories of subprograms

– Procedures are collection of statements that
define parameterized computations

– Functions structurally resemble procedures but
are semantically modeled on mathematical
functions

Copyright © 2006 Addison-Wesley. All rights reserved. 1-10

functions

• They are expected to produce no side effects

• In practice, program functions have side effects

Examples

float divider(int x, int y)

{

return (float)x/y;

}

void main()

{

void divider(int x, int y)

{

printf(“%f”, (float)x/y);

}

void main()

{{

float result;

int a=5, b=2;

result = divider(a/b);

printf(“%.2f”, result);

}

{

int a=5, b=2;

divider(a/b);

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-11

int a=5, b=2;

printf(“%f”, divider(a/b));

}

Design Issues for Subprograms

• What parameter passing methods are
provided?

• Are parameter types checked?

• Are local variables static or dynamic?

Copyright © 2006 Addison-Wesley. All rights reserved. 1-12

• Are local variables static or dynamic?

• Can subprogram definitions appear in other
subprogram definitions?

• Can subprograms be overloaded?

• Can subprogram be generic?

Local Referencing Environments

• Local variables can be stack-dynamic (bound to
storage)
– Advantages

• Support for recursion

• Storage for locals is shared among some subprograms

– Disadvantages

• Allocation/de-allocation, initialization time

Copyright © 2006 Addison-Wesley. All rights reserved. 1-13

• Allocation/de-allocation, initialization time

• Indirect addressing

• Subprograms cannot be history sensitive

• Local variables can be static
– More efficient (no indirection)

– No run-time overhead

– Cannot support recursion

Run-time Memory Structure

void DoSomeStuff (int data)

{

static int invocations = 0;

int x, y, z;

// do something

invocations ++;

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-14

Stack Frame (activation record)

package K {

int h, i;

void A (int x, int y){

boolean i, j;

B (h);

}

void B(int w) {

Copyright © 2006 Addison-Wesley. All rights reserved. 1-15

void B(int w) {

int j, k;

i = 2*w;

w = w+1;

}

void main () {

int a, b;

h=5; a=3; b=2;

A=(a,b);

}

Stack Frame (activation record)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-16

The scenario is funcA calling into funcB which in turn calls into funcC.

Stack Frame (activation record)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-17

Parameter Passing Methods

• Ways in which parameters are transmitted
to and/or from called subprograms

– Pass-by-value

– Pass-by-result

Copyright © 2006 Addison-Wesley. All rights reserved. 1-18

– Pass-by-result

– Pass-by-value-result

– Pass-by-reference

– Pass-by-name

Models of Parameter Passing

Copyright © 2006 Addison-Wesley. All rights reserved. 1-19

Pass-by-Value (In Mode)

• The value of the actual parameter is used to
initialize the corresponding formal
parameter

– Normally implemented by copying

– Can be implemented by transmitting an access

Copyright © 2006 Addison-Wesley. All rights reserved. 1-20

– Can be implemented by transmitting an access
path but not recommended (enforcing write
protection is not easy)

– When copies are used, additional storage is
required

– Storage and copy operations can be costly

Pass-by-Result (Out Mode)

• When a parameter is passed by result, no
value is transmitted to the subprogram; the
corresponding formal parameter acts as a
local variable; its value is transmitted to
caller’s actual parameter when control is
returned to the caller

Copyright © 2006 Addison-Wesley. All rights reserved. 1-21

returned to the caller
– Require extra storage location and copy
operation

• Potential problem: sub(p1, p1);
whichever formal parameter is copied back
will represent the current value of p1

Pass-by-Value-Result (inout Mode)

• A combination of pass-by-value and
pass-by-result

• Sometimes called pass-by-copy

• Formal parameters have local storage

Copyright © 2006 Addison-Wesley. All rights reserved. 1-22

• Formal parameters have local storage

• Disadvantages:

– Those of pass-by-result

– Those of pass-by-value

Pass-by-Reference (Inout Mode)

• Pass an access path

• Also called pass-by-sharing

• Passing process is efficient (no
copying and no duplicated storage)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-23

copying and no duplicated storage)

• Disadvantages
– Slower accesses (compared to pass-by-
value) to formal parameters

– Potentials for un-wanted side effects

– Un-wanted aliases (access broadened)

Pass-by-Reference

void B (int& w)

{

int j, k;

i = 2*w;

w = w+1;w = w+1;

…

}

B(h);

Copyright © 2006 Addison-Wesley. All rights reserved. 1-24

Pass-by-Name (Inout Mode)

• By textual substitution

• Formals are bound to an access method at
the time of the call, but actual binding to a
value or address takes place at the time of
a reference or assignment

Copyright © 2006 Addison-Wesley. All rights reserved. 1-25

a reference or assignment

• Allows flexibility in late binding

Pass-by-Name

int MyArray [10];

int foo (NamedVar) {

int x=3;

NamedVar=7;

return (NamedVar*17);

}

foo(MyArray[x])

int foo (MyArray[x]) {

int x=3;

MyArray[x]=7;

return (MyArray[x]*17);}

void main () {

int x=0;

cout << foo (MyArray [x]);

cout << foo (x);

}

return (MyArray[x]*17);

}

foo(x)

int foo (x) {

int x=3;

x=7;

return (x*17);

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-26

Implementing Parameter-Passing
Methods

• In most language parameter
communication takes place thru the run-
time stack

• Pass-by-reference are the simplest to
implement; only an address is placed in the

Copyright © 2006 Addison-Wesley. All rights reserved. 1-27

implement; only an address is placed in the
stack

• A subtle but fatal error can occur with
pass-by-reference and pass-by-value-
result: a formal parameter corresponding to
a constant can mistakenly be changed

Parameter Passing Methods of Major
Languages

• Fortran
– Always used the inout semantics model

– Before Fortran 77: pass-by-reference

– Fortran 77 and later: scalar variables are often passed by value-
result

• C
– Pass-by-value

Copyright © 2006 Addison-Wesley. All rights reserved. 1-28

– Pass-by-value

– Pass-by-reference is achieved by using pointers as parameters

• C++
– A special pointer type called reference type for pass-by-
reference

• Java
– All parameters are passed by value

– Object parameters are passed by reference

Parameter Passing Methods of Major
Languages (continued)

• Ada
– Three semantics modes of parameter transmission: in,
out, in out; in is the default mode

– Formal parameters declared out can be assigned but not
referenced; those declared in can be referenced but not
assigned; in out parameters can be referenced and
assigned

• C#

Copyright © 2006 Addison-Wesley. All rights reserved. 1-29

• C#
– Default method: pass-by-value
– Pass-by-reference is specified by preceding both a formal
parameter and its actual parameter with ref

• PHP: very similar to C#
• Perl: all actual parameters are implicitly placed in a
predefined array named @_

Type Checking Parameters

• Considered very important for reliability

• FORTRAN 77 and original C: none

• Pascal, FORTRAN 90, Java, and Ada: it is
always required

Copyright © 2006 Addison-Wesley. All rights reserved. 1-30

always required

• ANSI C and C++: choice is made by the
user

– Prototypes

• Relatively new languages Perl, JavaScript,
and PHP do not require type checking

Multidimensional Arrays as Parameters

• If a multidimensional array is passed to a
subprogram and the subprogram is
separately compiled, the compiler needs to
know the declared size of that array to
build the storage mapping function

Copyright © 2006 Addison-Wesley. All rights reserved. 1-31

build the storage mapping function

Multidimensional Arrays as Parameters:
C and C++

• Programmer is required to include the
declared sizes of all but the first subscript
in the actual parameter

• Disallows writing flexible subprograms

• Solution: pass a pointer to the array and the

Copyright © 2006 Addison-Wesley. All rights reserved. 1-32

• Solution: pass a pointer to the array and the
sizes of the dimensions as other
parameters; the user must include the
storage mapping function in terms of the
size parameters

Multidimensional Arrays as Parameters:
Java and C#

• Similar to Ada

• Arrays are objects; they are all single-
dimensioned, but the elements can be
arrays

Copyright © 2006 Addison-Wesley. All rights reserved. 1-33

• Each array inherits a named constant
(length in Java, Length in C#) that is set to
the length of the array when the array
object is created

Design Considerations for Parameter
Passing

• Two important considerations

– Efficiency

– One-way or two-way data transfer

• But the above considerations are in conflict

Copyright © 2006 Addison-Wesley. All rights reserved. 1-34

– Good programming suggest limited access to
variables, which means one-way whenever
possible

– But pass-by-reference is more efficient to pass
structures of significant size

Overloaded Subprograms

• An overloaded subprogram is one that has the
same name as another subprogram in the same
referencing environment
– Every version of an overloaded subprogram has a unique
protocol

• C++, Java, C#, and Ada include predefined
overloaded subprograms

Copyright © 2006 Addison-Wesley. All rights reserved. 1-35

overloaded subprograms
• In Ada, the return type of an overloaded function
can be used to disambiguate calls (thus two
overloaded functions can have the same
parameters)

• Ada, Java, C++, and C# allow users to write
multiple versions of subprograms with the same
name

Generic Subprograms

• A generic or polymorphic subprogram
takes parameters of different types on
different activations

• Overloaded subprograms provide ad hoc
polymorphism

Copyright © 2006 Addison-Wesley. All rights reserved. 1-36

polymorphism

• A subprogram that takes a generic
parameter that is used in a type expression
that describes the type of the parameters of
the subprogram provides parametric
polymorphism

Examples of parametric
polymorphism: C++

template <class Type>
Type max(Type first, Type second) {

return first > second ? first : second;

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-37

• The above template can be instantiated for any
type for which operator > is defined

int max (int first, int second) {

return first > second? first : second;

}

Design Issues for Functions

• Are side effects allowed?
– Parameters should always be in-mode to

reduce side effect (like Ada)

• What types of return values are allowed?
– Most imperative languages restrict the return

types

Copyright © 2006 Addison-Wesley. All rights reserved. 1-38

– Most imperative languages restrict the return
types

– C allows any type except arrays and functions

– C++ is like C but also allows user-defined
types

– Ada allows any type

– Java and C# do not have functions but methods
can have any type

User-Defined Overloaded
Operators

• Operators can be overloaded in Ada and C++

• An Ada example
Function “*”(A,B: in Vec_Type): return Integer is

Sum: Integer := 0;

begin

Copyright © 2006 Addison-Wesley. All rights reserved. 1-39

for Index in A’range loop

Sum := Sum + A(Index) * B(Index)

end loop

return sum;

end “*”;

…

c = a * b; -- a, b, and c are of type Vec_Type

Coroutines

• A coroutine is a subprogram that has multiple
entries and controls them itself

• Also called symmetric control: caller and called
coroutines are on a more equal basis

• A coroutine call is named a resume

• The first resume of a coroutine is to its beginning,

Copyright © 2006 Addison-Wesley. All rights reserved. 1-40

• The first resume of a coroutine is to its beginning,
but subsequent calls enter at the point just after
the last executed statement in the coroutine

• Coroutines repeatedly resume each other, possibly
forever

• Coroutines provide quasi-concurrent execution of
program units (the coroutines); their execution is
interleaved, but not overlapped

Coroutines Illustrated: Possible
Execution Controls

Copyright © 2006 Addison-Wesley. All rights reserved. 1-41

Coroutines Illustrated: Possible
Execution Controls

Copyright © 2006 Addison-Wesley. All rights reserved. 1-42

Coroutines Illustrated: Possible
Execution Controls with Loops

Copyright © 2006 Addison-Wesley. All rights reserved. 1-43

Summary

• A subprogram definition describes the actions
represented by the subprogram

• Subprograms can be either functions or
procedures

• Local variables in subprograms can be stack-
dynamic or static

Copyright © 2006 Addison-Wesley. All rights reserved. 1-44

dynamic or static

• Three models of parameter passing: in mode, out
mode, and inout mode

• Some languages allow operator overloading

• Subprograms can be generic

• A coroutine is a special subprogram with multiple
entries

