
WEEK 8

Imperative Programming

slide 1

WEEK 8

Original by Vitaly Shmatikov

Outline

• Introduction : imperative programming
• Elements of Imperative Programs

• Data type definitions
• Variable declarations
• Assignment statements
• Expressions
• Structured Control flow
• Blocks and Scopes
• Subprogram

2

• Introduction : imperative programming
• Elements of Imperative Programs

• Data type definitions
• Variable declarations
• Assignment statements
• Expressions
• Structured Control flow
• Blocks and Scopes
• Subprogram

Introduction

• Imperative programming is characterized by
programming with
• a program state
• commands which modify the state.

• Imperative: a command or order

• Commands are similar to the native machine
instructions of traditional computer hardware – the
von Neumann model.

• von Neumann model: the basic concepts of stored
program computers.

3

• Imperative programming is characterized by
programming with
• a program state
• commands which modify the state.

• Imperative: a command or order

• Commands are similar to the native machine
instructions of traditional computer hardware – the
von Neumann model.

• von Neumann model: the basic concepts of stored
program computers.

Imperative Programming

• Oldest and most popular paradigm
• Fortran, Algol, C, Java …

• Mirrors computer architecture
• In a von Neumann machine, memory holds instructions

and data

• Key operation: assignment
• Side effect: updating state (i.e., memory) of the

machine

• Control-flow statements
• Conditional and unconditional (GO TO) branches, loops

slide 4

• Oldest and most popular paradigm
• Fortran, Algol, C, Java …

• Mirrors computer architecture
• In a von Neumann machine, memory holds instructions

and data

• Key operation: assignment
• Side effect: updating state (i.e., memory) of the

machine

• Control-flow statements
• Conditional and unconditional (GO TO) branches, loops

Introduction

• A programming language is said to be Turing
complete if it contains
• Integer variables, values and operations
• Assignment statements
• Statement sequencing
• Conditionals (if)
• Branching statements (goto)

5

• A programming language is said to be Turing
complete if it contains
• Integer variables, values and operations
• Assignment statements
• Statement sequencing
• Conditionals (if)
• Branching statements (goto)

Introduction

• An imperative programming language is one
which is Turing complete and also (optionally)
supports
• Data types for real numbers, characters, strings,

booleans and their operators
• For and while loops, case (switch) statements
• Arrays
• Records
• Input and output commands
• Pointers
• Procedures and functions

6

• An imperative programming language is one
which is Turing complete and also (optionally)
supports
• Data types for real numbers, characters, strings,

booleans and their operators
• For and while loops, case (switch) statements
• Arrays
• Records
• Input and output commands
• Pointers
• Procedures and functions

Elements of Imperative Programs

• Data type definitions
• Variable declarations (usually typed)
• Expressions and assignment statements
• Control flow statements (usually structured)
• Lexical scopes and blocks

• Goal: provide locality of reference

• Declarations and definitions of procedures and
functions (i.e., parameterized blocks)

slide 7

• Data type definitions
• Variable declarations (usually typed)
• Expressions and assignment statements
• Control flow statements (usually structured)
• Lexical scopes and blocks

• Goal: provide locality of reference

• Declarations and definitions of procedures and
functions (i.e., parameterized blocks)

Procedural Programming

• Procedure:
• the act, method or manner of proceeding in some

process or course of action
• a particular course of action or way of doing

something.

• When imperative programming is combined with
subprograms,
it is called procedural programming.

• Procedure:
• the act, method or manner of proceeding in some

process or course of action
• a particular course of action or way of doing

something.

• When imperative programming is combined with
subprograms,
it is called procedural programming.

Flowchart

• Used to model
imperative programs

• Based on the three
control statements
that are essential
to have Turing
machine capability

• Precursor of UML
and other modern
techniques

• Originated to
describe process
flow in general

• Used to model
imperative programs

• Based on the three
control statements
that are essential
to have Turing
machine capability

• Precursor of UML
and other modern
techniques

• Originated to
describe process
flow in general

Data type definitions

• Data types + operations
• Primitive data types

• Integer, Real, Decimal
• Character, String
• Boolean

• User-defined data types (using type constructor)
• Array, Associative array
• Record, Variant record
• Enumeration, Subrange
• Pointer, Reference type

slide 10

• Data types + operations
• Primitive data types

• Integer, Real, Decimal
• Character, String
• Boolean

• User-defined data types (using type constructor)
• Array, Associative array
• Record, Variant record
• Enumeration, Subrange
• Pointer, Reference type

Variable Declarations

• Typed variable declarations restrict the values that
a variable may assume during program execution
• Built-in types (int, char …) or user-defined
• Initialization: Java integers to 0. What about C?

• Variable size
• How much space needed to hold values of this variable?

• C on a 32-bit machine: sizeof(char) = 1 byte, sizeof(short) = 2
bytes, sizeof(int) = 4 bytes, sizeof(char*) = 4 bytes (why?)

• What about this user-defined datatype:

slide 11

• Typed variable declarations restrict the values that
a variable may assume during program execution
• Built-in types (int, char …) or user-defined
• Initialization: Java integers to 0. What about C?

• Variable size
• How much space needed to hold values of this variable?

• C on a 32-bit machine: sizeof(char) = 1 byte, sizeof(short) = 2
bytes, sizeof(int) = 4 bytes, sizeof(char*) = 4 bytes (why?)

• What about this user-defined datatype:

Variables: Locations and Values

• When a variable is declared, it is bound to some
memory location and becomes its identifier
• Location could be in global, heap, or stack storage

• l-value: memory location (address)
• r-value: value stored at the memory location

identified by l-value
• Assignment: A (target) = B (expression)

• Destructive update: overwrites the memory location
identified by A with a value of expression B

• What if a variable appears on both sides of assignment?

slide 12

• When a variable is declared, it is bound to some
memory location and becomes its identifier
• Location could be in global, heap, or stack storage

• l-value: memory location (address)
• r-value: value stored at the memory location

identified by l-value
• Assignment: A (target) = B (expression)

• Destructive update: overwrites the memory location
identified by A with a value of expression B

• What if a variable appears on both sides of assignment?

Copy vs. Reference Semantics

• Copy semantics: expression is evaluated to a
value, which is copied to the target
• Used by imperative languages

• Reference semantics: expression is evaluated to
an object, whose pointer is copied to the target
• Used by object-oriented languages

slide 13

• Copy semantics: expression is evaluated to a
value, which is copied to the target
• Used by imperative languages

• Reference semantics: expression is evaluated to
an object, whose pointer is copied to the target
• Used by object-oriented languages

Variables and Assignment

• On the RHS of an assignment, use the variable’s
r-value; on the LHS, use its l-value
• Example: x = x+1
• Meaning: “get r-value of x, add 1, store the result into

the l-value of x”

• An expression that does not have an l-value
cannot appear on the LHS of an assignment
• What expressions don’t have l-values?

• Examples: 1=x+1, ++x++
• What about a[1] = x+1, where a is an array?

slide 14

• On the RHS of an assignment, use the variable’s
r-value; on the LHS, use its l-value
• Example: x = x+1
• Meaning: “get r-value of x, add 1, store the result into

the l-value of x”

• An expression that does not have an l-value
cannot appear on the LHS of an assignment
• What expressions don’t have l-values?

• Examples: 1=x+1, ++x++
• What about a[1] = x+1, where a is an array?

l-Values and r-Values (1)

• Any expression or assignment statement in an
imperative language can be understood in terms
of l-values and r-values of variables involved
• In C, also helps with complex pointer dereferencing

and pointer arithmetic

• Literal constants
• Have r-values, but not l-values

• Variables
• Have both r-values and l-values
• Example: x=x*y means “compute rval(x)*rval(y) and

store it in lval(x)”
slide 15

• Any expression or assignment statement in an
imperative language can be understood in terms
of l-values and r-values of variables involved
• In C, also helps with complex pointer dereferencing

and pointer arithmetic

• Literal constants
• Have r-values, but not l-values

• Variables
• Have both r-values and l-values
• Example: x=x*y means “compute rval(x)*rval(y) and

store it in lval(x)”

l-Values and r-Values (2)

• Pointer variables
• Their r-values are l-values of another variable

• Intuition: the value of a pointer is an address

• Overriding r-value and l-value computation in C
• &x always returns l-value of x
• *p always return r-value of p

• If p is a pointer, this is an l-value of another variable

slide 16

• Pointer variables
• Their r-values are l-values of another variable

• Intuition: the value of a pointer is an address

• Overriding r-value and l-value computation in C
• &x always returns l-value of x
• *p always return r-value of p

• If p is a pointer, this is an l-value of another variable

What are the values of
p and x at this point?

l-Values and r-Values (3)

• Declared functions and procedures
• Have l-values, but no r-values

slide 17

Expressions

• Order of evaluation: Operator & Operand

• Order of operand
• Precedence rules
• Associativity rules

• Order of operand
• Functional side effect

• Short-circuit evaluation
• Side effect in expression

18

• Order of evaluation: Operator & Operand

• Order of operand
• Precedence rules
• Associativity rules

• Order of operand
• Functional side effect

• Short-circuit evaluation
• Side effect in expression

Structured Control Flow

• Control flow in imperative languages is most often
designed to be sequential
• Instructions executed in order they are written
• Some also support concurrent execution (Java)

• Program is structured if control flow is evident
from syntactic (static) structure of program text
• Big idea: programmers can reason about dynamic

execution of a program by just analyzing program text
• Eliminate complexity by creating language constructs

for common control-flow “patterns”
• Iteration, selection, procedures/functions

slide 19

• Control flow in imperative languages is most often
designed to be sequential
• Instructions executed in order they are written
• Some also support concurrent execution (Java)

• Program is structured if control flow is evident
from syntactic (static) structure of program text
• Big idea: programmers can reason about dynamic

execution of a program by just analyzing program text
• Eliminate complexity by creating language constructs

for common control-flow “patterns”
• Iteration, selection, procedures/functions

Structured Programming

• A disciplined approach to imperative program
design.

• Uses procedural abstraction and top-down
design to identify program components

• Does not use goto statements

• A disciplined approach to imperative program
design.

• Uses procedural abstraction and top-down
design to identify program components

• Does not use goto statements

Fortran Control Structure

10 IF (X .GT. 0.000001) GO TO 20
11 X = -X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30 X = X+Y

...
50 CONTINUE

X = A
Y = B-A
GO TO 11
…

slide 21

10 IF (X .GT. 0.000001) GO TO 20
11 X = -X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30 X = X+Y

...
50 CONTINUE

X = A
Y = B-A
GO TO 11
…

Similar structure may occur in assembly code

Historical Debate

• Dijkstra, “GO TO Statement Considered Harmful”
• Letter to Editor, Comm. ACM, March 1968
• Linked from the course website

• Knuth, “Structured Prog. with Go To Statements”
• You can use goto, but do so in structured way …

• Continued discussion
• Welch, “GOTO (Considered Harmful)n, n is Odd”

• General questions
• Do syntactic rules force good programming style?
• Can they help?

slide 22

• Dijkstra, “GO TO Statement Considered Harmful”
• Letter to Editor, Comm. ACM, March 1968
• Linked from the course website

• Knuth, “Structured Prog. with Go To Statements”
• You can use goto, but do so in structured way …

• Continued discussion
• Welch, “GOTO (Considered Harmful)n, n is Odd”

• General questions
• Do syntactic rules force good programming style?
• Can they help?

Modern Style

• Standard constructs that structure jumps
if … then … else … end
while … do … end
for … { … }
case …

• Group code in logical blocks
• Avoid explicit jumps (except function return)
• Cannot jump into the middle of a block or

function body

slide 23

• Standard constructs that structure jumps
if … then … else … end
while … do … end
for … { … }
case …

• Group code in logical blocks
• Avoid explicit jumps (except function return)
• Cannot jump into the middle of a block or

function body

Selection

• Two-way selector
• if

• Nested if
• static semantic

• Multiple-way selector
• switch, case

slide 24

• Two-way selector
• if

• Nested if
• static semantic

• Multiple-way selector
• switch, case

Iteration

• Definite

• Indefinite
• Termination depends on a dynamically computed value

slide 25

• Definite

• Indefinite
• Termination depends on a dynamically computed value

How do we know statically (i.e., before
we run the program) that the loop will
terminate, i.e., that n will eventually
become less than or equal to 0?

Iteration Constructs in C

• while (condition) stmt;
while (condition) { stmt; stmt; …; }

• do stmt while (condition);
do { stmt; stmt; …; } while (condition);

• for (<initialize>; <test>; <step>) stmt;
• Restricted form of “while” loop – same as

<initialize>; while (<test>) { stmt; <step> }

for (<initialize>; <test>; <step>) { stmt; stmt; …; }

slide 26

• while (condition) stmt;
while (condition) { stmt; stmt; …; }

• do stmt while (condition);
do { stmt; stmt; …; } while (condition);

• for (<initialize>; <test>; <step>) stmt;
• Restricted form of “while” loop – same as

<initialize>; while (<test>) { stmt; <step> }

for (<initialize>; <test>; <step>) { stmt; stmt; …; }

“Breaking Out” Of A Loop in C

slide 27

Forced Loop Re-Entry in C

slide 28

Block-Structured Languages

• Nested blocks with local variables

{ int x = 2;
{ int y = 3;

x = y+2;
}

}

• Storage management
• Enter block: allocate space for variables
• Exit block: some or all space may be deallocated

new variables declared in nested blocks

inner
block

outer
block local variable

slide 29

• Nested blocks with local variables

{ int x = 2;
{ int y = 3;

x = y+2;
}

}

• Storage management
• Enter block: allocate space for variables
• Exit block: some or all space may be deallocated

inner
block

outer
block local variable

global variable

Blocks in Common Languages

• Examples
• C, JavaScript { … }
• Algol begin … end
• ML let … in … end

• Two forms of blocks
• Inline blocks
• Blocks associated with functions or procedures

slide 30

• Examples
• C, JavaScript { … }
• Algol begin … end
• ML let … in … end

• Two forms of blocks
• Inline blocks
• Blocks associated with functions or procedures

Simplified Machine Model

Registers DataCode

Stack

slide 31

Environment
pointer

Program
counter

Heap

Memory Management

• Registers, Code segment, Program counter
• Ignore registers (for our purposes) and details of

instruction set

• Data segment
• Stack contains data related to block entry/exit
• Heap contains data of varying lifetime
• Environment pointer points to current stack position

• Block entry: add new activation record to stack
• Block exit: remove most recent activation record

slide 32

• Registers, Code segment, Program counter
• Ignore registers (for our purposes) and details of

instruction set

• Data segment
• Stack contains data related to block entry/exit
• Heap contains data of varying lifetime
• Environment pointer points to current stack position

• Block entry: add new activation record to stack
• Block exit: remove most recent activation record

Scope and Lifetime

• Scope
• Region of program text where declaration is visible

• Lifetime
• Period of time when location is allocated to program

slide 33

• Scope
• Region of program text where declaration is visible

• Lifetime
• Period of time when location is allocated to program

• Inner declaration of x hides outer one
(“hole in scope”)

• Lifetime of outer x includes time when
inner block is executed

• Lifetime scope

{ int x = … ;
{ int y = … ;

{ int x = … ;
….
};

};
};

Inline Blocks

• Activation record
• Data structure stored on run-time stack
• Contains space for local variables

{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

slide 34

May need space for variables and intermediate results like (x+y), (x-y)

{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

Activation Record For Inline Block

• Control link
• Pointer to previous record

on stack

• Push record on stack
• Set new control link to

point to old env ptr
• Set env ptr to new record

• Pop record off stack
• Follow control link of

current record to reset
environment pointer

Control link

Local variables

Intermediate results

Control link

slide 35

• Control link
• Pointer to previous record

on stack

• Push record on stack
• Set new control link to

point to old env ptr
• Set env ptr to new record

• Pop record off stack
• Follow control link of

current record to reset
environment pointer

Control link

Local variables

Intermediate results

Environment
pointer

In practice, can be optimized away

Example

{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

Control link

x

y

0

1

slide 36

{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

x+y

x-y

Environment
pointer

1

-1

Control link

z -1

Subprogram

• Procedures and functions
• Local referencing environments
• Parameter-passing methods
• Overloaded subprograms
• User-defined overloaded operator
• Generic subprograms
• Coroutines

• Procedures and functions
• Local referencing environments
• Parameter-passing methods
• Overloaded subprograms
• User-defined overloaded operator
• Generic subprograms
• Coroutines

slide 37

