Chapter 11

Abstract Data Types and
Encapsulation Concepts

Chapter 11 Topics

- The Concept of Abstraction

- Introduction to Data Abstraction

- Design Issues for Abstract Data Types
- Language Examples

- Parameterized Abstract Data Types

- Encapsulation Constructs

- Naming Encapsulations

Copyright © 2006 Addison-Wesley. All rights reserved.

1-2

The Concept of Abstraction

- An abstraction is a view or representation of an

entity that includes only the most significant
attributes

- The concept of abstraction is fundamental in
programming (and computer science)

- Nearly all programming languages support process
abstraction with subprograms

- Nearly all programming languages designed since
1980 support data abstraction

Copyright © 2006 Addison-Wesley. All rights reserved. 1-3

Stack implementation as data type

#include <stdio.h>
#include<ctype.h>
define MAXSIZE 200

int stack[MAXSIZE];

int top;//index pointing to the
top of stack

void main ()
{
void push (int) ;
int pop();
int topOne;
push (5) ;
push (10) ;
topOne=pop () ;
printf (“%d”, topOne) ;

Copyright © 2006 Addison-Wesley. All rights reserved.

void push (int vy) {

}

if (top>MAXSIZE)
printf ("STACK FULL") ;
}
else {
top++;
stack[topl=y; }

int pop () {

int a;
if (top<=0) {
printf ("STACK EMPTY");
return 0; }
else {
a=stack[top];
top--; }

return(a) ;

1-4

Introduction to Data Abstraction

- An abstract data type is a user-defined
data type that satisfies the following two
conditions:

- The representation of, and operations on,
objects of the type are defined in a single
syntactic unit

- The representation of objects of the type is
hidden from the program units that use these
objects, so the only operations possible are
those provided in the type's definition

Copyright © 2006 Addison-Wesley. All rights reserved.

1-5

Advantages of Data Abstraction

- Advantage of the first condition

- Program organization, modifiability
(everything associated with a data structure is
together), and separate compilation

- Advantage the second condition
- Reliability--by hiding the data
representations, user code cannot directly
access objects of the type or depend on the

representation, allowing the representation to
be changed without affecting user code

Copyright © 2006 Addison-Wesley. All rights reserved.

1-6

StaCk implementation as abstract data type

class stack {
public:
stack () ;
~stack (void) ;

void push (int num) ;

int pop(void) ;
protected:
int data[MaxSize];
}
void main () {
int topOne;
stack stk;
stk.push (5);
stk.push (10) ;

topOne = stk.pop():;

Copyright © 2006 Addison-Wesley. All rights reserved.

// Adds Item to the top
// Returns Item from the top

// The actual Data array

1-7

Design Issues

A syntactic unit to define an ADT
Built-in operations

- Assignment

- Comparison

Common operations

- lterators

- Accessors

- Constructors
- Destructors

Parameterized ADTs

Copyright © 2006 Addison-Wesley. All rights reserved. 1-8

Language Examples: C++

- Based on C struct type and Simula 67 classes
- The class is the encapsulation device
- Data members are the data defined in a class

- Member functions are the functions (methods)
defined in a class.

- A member function can be defined in 2 ways
- the complete definition: header and body ->inlined
- only its header -> seperately compiled

Copyright © 2006 Addison-Wesley. All rights reserved. 1-9

Language Examples: C++ (continued)

. All of the class instances of a class share a
single copy of the member functions

- Each instance of a class has its own copy of
the class data members

- Instances can be stack dynamic, or heap
dynamic
- Information Hiding

- Private clause for hidden entities
- Public clause for interface entities
- Protected clause for inheritance

Copyright © 2006 Addison-Wesley. All rights reserved.

Language Examples: C++ (continued)

- Constructors:

- Functions to initialize the data members of
instances (they do not create the objects)

- May also allocate storage if part of the object
is heap-dynamic

- Can include parameters to provide
parameterization of the objects

- Implicitly called when an instance is created
- Can be explicitly called
- Name is the same as the class name

Copyright © 2006 Addison-Wesley. All rights reserved.

Language Examples: C++ (continued)

- Destructors

- Functions to cleanup after an instance is
destroyed; usually just to reclaim heap storage

- Implicitly called when the object’s lifetime ends
- Can be explicitly called
- Name is the class name, preceded by a tilde (~)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-12

An Example in C++

class stack {
private:
int *stackPtr, maxLen, topPtr;
public:
stack() { // a constructor
stackPtr = new int [100];
maxLen = 99;
topPtr = -1;
};
~stack () {delete [] stackPtr;};
void push (int num) {..};
void pop () {..}:
int top () {..};
int empty () {..};

Copyright © 2006 Addison-Wesley. All rights reserved.

void main ()

{
int topOne;
stack stk;
stk.push (42) ;
stk.push (17);

topOne = stk.top()

stk.pop ()

Language Examples: C++ (continued)

- Friend functions or classes - to provide
access to private members to some
unrelated units or functions

- Necessary in C++

vold PrintWeather (Temp &cTemp, Humid &cHumid)
{

std::cout << "The temperature 1s " <<

cTemp.m nTemp << " and the humidity 1s " <<

cHumid.m_nHumid << std::endl;

Copyright © 2006 Addison-Wesley. All rights reserved.

Friend function in C++

class Humid;
class Temp {
private:
int m nTemp;
public:
Temp (int nTemp) { m nTemp = nTemp; }
friend void PrintWeather (Temp &cTemp, Humid &cHumid) ;
i
class Humid {
private:
int m nHumid;
public:
Humid (int nHumid) { m nHumid = nHumid; }

friend void PrintWeather (Temp &cTemp, Humid &cHumid);};

Copyright © 2006 Addison-Wesley. All rights reserved. 1-15

Language Examples: Java

- Similar to C++, except:
- All user-defined types are classes

- All objects are allocated from the heap and
accessed through reference variables

- Individual entities in classes have access
control modifiers (private or public), rather
than clauses

- Java has a second scoping mechanism,
package scope, which can be used in place of
friends

- All entities in all classes in a package that do not
have access control modifiers are visible
throughout the package

Copyright © 2006 Addison-Wesley. All rights reserved. 1-16

An Example in Java

class StackClass {
private:

private int [] stackRef;

private int maxLen, toplndex;

public StackClass() { // a constructor
stackRef = new int [100];

maxLen = 99;
topPtr = -1;
s

public void push (int num) ({..

public void pop () {..};
public int top () {..};
public boolean empty () {..};

Copyright © 2006 Addison-Wesley. All rights reserved.

Y

An Example in Java

public class TestStack {
public static void main(String[] args) {
StackClass myStack = new StackClass{();
myStack.push (42) ;
myStack.push (17);

System.out.println(“top of stack 1is:”+ myStack.top());

myStack.pop () ;

Copyright © 2006 Addison-Wesley. All rights reserved.

Language Examples: C#

- Based on C++ and Java

- Adds two access modifiers, /internal and
protected internal

- All class instances are heap dynamic

- Default constructors are available for all
classes

- Garbage collection is used for most heap
objects, so destructors are rarely used

e structs are lightweight classes that do
not support inheritance

Copyright © 2006 Addison-Wesley. All rights reserved.

Language Examples: C# (continued)

- Common solution to need for access to

data members: accessor methods (getter
and setter)

- C# provides properties as a way of
implementing getters and setters without
requiring explicit method calls

Copyright © 2006 Addison-Wesley. All rights reserved. 1-20

C# Property Example

public class Weather {

public int DegreeDays { //** DegreeDays 1is a property
get {return degreeDays;}
set {degreeDays = value;}

}

private 1nt degreeDays;

Weather w = new Weather () ;
int degreeDaysToday, oldDegreeDays;

w.DegreeDays = degreeDaysToday;

oldDegreeDays = w.DegreeDays;

Copyright © 2006 Addison-Wesley. All rights reserved. 1-21

C# example

class CelsiusToFahrenhit

{
private double celsius;
public double celsius {
set { celsius = value; }

}
public double ToFahrenhit () {

return (celsius*9/5)+32;

}
static void Main(string[] args)
{
CelsiusToFahrenhit myCTOF = new CelsiusToFahrenhit ()
myCTOF.Celsius = 37;

Console.WritelLine (myCTOF.ToFahrenhit ()) ;
}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-22

Parameterized Abstract Data Types

- Parameterized ADTs allow designing an
ADT that can store any type elements

- Also known as generic classes

- C++ and Ada provide support for
parameterized ADTs

- Java 5.0 provides a restricted form of
parameterized ADTs

- C# does not currently support
parameterized classes

Copyright © 2006 Addison-Wesley. All rights reserved. 1-23

Parameterized ADTs in C++

- Classes can be somewhat generic by writing
parameterized constructor functions

template <class Type>
class stack {
private:
Type *stackPtr;

public:
stack (int size) {
stk ptr = new Type [size];
max len = size - 1;
top = -1;

}
stack<int> stk (100);

Copyright © 2006 Addison-Wesley. All rights reserved. 1-24

Encapsulation Constructs

- Large programs have two special needs:

- Some means of organization, other than simply
division into subprograms

- Some means of partial compilation (compilation
units that are smaller than the whole program)
- Obvious solution: a grouping of
subprograms that are logically related into
a unit that can be separately compiled
(compilation units)

- Such collections are called encapsulation

Copyright © 2006 Addison-Wesley. All rights reserved. 1-25

Encapsulation in C

- Files containing one or more subprograms
can be independently compiled

- The interface is placed in a header file

- Problem: the linker does not check types
between a header and associated
implementation

« #include preprocessor specification

Copyright © 2006 Addison-Wesley. All rights reserved. 1-26

Encapsulation in C++

- Similar to C

- Addition of friend functions that have
access to private members of the friend
class

Copyright © 2006 Addison-Wesley. All rights reserved. 1-27

C# Assemblies

- A collection of files that appear to be a
single dynamic link library or executable

- Each file contains a module that can be
separately compiled

- ADLL is a collection of classes and
methods that are individually linked to an
executing program

- C# has an access modifier called internal;
an internal member of a class is visible to
all classes in the assembly in which it

appears

Copyright © 2006 Addison-Wesley. All rights reserved. 1-28

Naming Encapsulations

- Large programs define many global names;
need a way to divide into logical groupings

- A naming encapsulation is used to create a
new scope for names
- C++ Namespaces

- Can place each library in its own namespace and
qualify names used outside with the namespace

- C# also includes namespaces

Copyright © 2006 Addison-Wesley. All rights reserved. 1-29

Namespaces in C++

Syntax
namespace identifier

{

entities

}

namespace: :entities

Example:
namespace myNamespace
{
int a, b;
}
namespace: :a

namespace: :b

Copyright © 2006 Addison-Wesley. All rights reserved.

#include <iostream>
using namespace std;
namespace first
{

int var = 5;
}

namespace second

{
double var = 3.14106;

}
int main () {
cout << first::var << endl;

cout << second::var <<
endl;

return 0;

1-30

C++ example

#include <iostream>

int main () {
float celsius;

float fahrenheit;
std: :cout << "Enter Celsius

std::cin >> celsius;

fahrenheit = 1.8 * celsius + 32;

std: :cout << "Fahrenheit = " << fahrenheit <<
std: :endl;

Copyright © 2006 Addison-Wesley. All rights reserved. 1-31

Naming Encapsulations (continued)

- Java Packages

- Packages can contain more than one class
definition; classes in a package are partial
friends

- Clients of a package can use fully qualified
name or use the import declaration

Copyright © 2006 Addison-Wesley. All rights reserved. 1-32

Summary

- The concept of ADTs and their use in program

design was a milestone in the development of
languages

- Two primary features of ADTs are the packaging of
data with their associated operations and
information hiding

- C++ data abstraction is provided by classes

- Java’s data abstraction is similar to C++

- C++ allow parameterized ADTs

- C++, C#, and Java provide naming encapsulation

Copyright © 2006 Addison-Wesley. All rights reserved. 1-33

