
Chapter 11Chapter 11Chapter 11Chapter 11

Abstract Data Types and Abstract Data Types and
Encapsulation Concepts

Chapter 11 Topics

• The Concept of Abstraction

• Introduction to Data Abstraction

• Design Issues for Abstract Data Types

• Language Examples

• Parameterized Abstract Data Types

Copyright © 2006 Addison-Wesley. All rights reserved. 1-2

• Parameterized Abstract Data Types

• Encapsulation Constructs

• Naming Encapsulations

The Concept of Abstraction

• An abstraction is a view or representation of an
entity that includes only the most significant
attributes

• The concept of abstraction is fundamental in
programming (and computer science)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-3

programming (and computer science)

• Nearly all programming languages support process
abstraction with subprograms

• Nearly all programming languages designed since
1980 support data abstraction

Stack implementation as data type

#include <stdio.h>

#include<ctype.h>

define MAXSIZE 200

int stack[MAXSIZE];

int top;//index pointing to the

top of stack

void main()

void push(int y) {

if(top>MAXSIZE) {

printf(“STACK FULL");

}

else {

top++;

stack[top]=y; }

}void main()

{

void push(int);

int pop();

int topOne;

push(5);

push(10);

topOne=pop();

printf(“%d”,topOne);

}

}

int pop() {

int a;

if(top<=0) {

printf(“STACK EMPTY");

return 0; }

else {

a=stack[top];

top--; }

return(a);

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-4

Introduction to Data Abstraction

• An abstract data type is a user-defined
data type that satisfies the following two
conditions:

– The representation of, and operations on,
objects of the type are defined in a single

Copyright © 2006 Addison-Wesley. All rights reserved. 1-5

objects of the type are defined in a single
syntactic unit

– The representation of objects of the type is
hidden from the program units that use these
objects, so the only operations possible are
those provided in the type's definition

Advantages of Data Abstraction

• Advantage of the first condition

– Program organization, modifiability
(everything associated with a data structure is
together), and separate compilation

• Advantage the second condition

Copyright © 2006 Addison-Wesley. All rights reserved. 1-6

• Advantage the second condition

– Reliability--by hiding the data
representations, user code cannot directly
access objects of the type or depend on the
representation, allowing the representation to
be changed without affecting user code

Stack implementation as abstract data type

class stack {

public:

stack();

~stack(void);

void push(int num); // Adds Item to the top

int pop(void); // Returns Item from the top

protected:

int data[MaxSize]; // The actual Data array

}

void main() {

int topOne;

stack stk;

stk.push(5);

stk.push(10);

topOne = stk.pop();

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-7

Design Issues

• A syntactic unit to define an ADT

• Built-in operations
– Assignment

– Comparison

• Common operations

Copyright © 2006 Addison-Wesley. All rights reserved. 1-8

• Common operations
– Iterators

– Accessors

– Constructors

– Destructors

• Parameterized ADTs

Language Examples: C++

• Based on C struct type and Simula 67 classes

• The class is the encapsulation device

• Data members are the data defined in a class

• Member functions are the functions (methods)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-9

• Member functions are the functions (methods)
defined in a class.

• A member function can be defined in 2 ways

– the complete definition: header and body ->inlined

– only its header -> seperately compiled

Language Examples: C++ (continued)

• All of the class instances of a class share a
single copy of the member functions

• Each instance of a class has its own copy of
the class data members

• Instances can be stack dynamic, or heap

Copyright © 2006 Addison-Wesley. All rights reserved. 1-10

• Instances can be stack dynamic, or heap
dynamic

• Information Hiding

– Private clause for hidden entities

– Public clause for interface entities

– Protected clause for inheritance

Language Examples: C++ (continued)

• Constructors:

– Functions to initialize the data members of
instances (they do not create the objects)

– May also allocate storage if part of the object
is heap-dynamic

Copyright © 2006 Addison-Wesley. All rights reserved. 1-11

is heap-dynamic

– Can include parameters to provide
parameterization of the objects

– Implicitly called when an instance is created

– Can be explicitly called

– Name is the same as the class name

Language Examples: C++ (continued)

• Destructors

– Functions to cleanup after an instance is
destroyed; usually just to reclaim heap storage

– Implicitly called when the object’s lifetime ends

– Can be explicitly called

Copyright © 2006 Addison-Wesley. All rights reserved. 1-12

– Can be explicitly called

– Name is the class name, preceded by a tilde (~)

An Example in C++

class stack {

private:

int *stackPtr, maxLen, topPtr;

public:

stack() { // a constructor

stackPtr = new int [100];

maxLen = 99;

void main()

{

int topOne;

stack stk;

stk.push(42);

stk.push(17);

topOne = stk.top();
maxLen = 99;

topPtr = -1;

};

~stack () {delete [] stackPtr;};

void push (int num) {…};

void pop () {…};

int top () {…};

int empty () {…};

}

topOne = stk.top();

stk.pop();

…

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-13

Language Examples: C++ (continued)

• Friend functions or classes - to provide
access to private members to some
unrelated units or functions

– Necessary in C++

Copyright © 2006 Addison-Wesley. All rights reserved. 1-14

void PrintWeather(Temp &cTemp, Humid &cHumid)

{

std::cout << "The temperature is " <<

cTemp.m_nTemp << " and the humidity is " <<

cHumid.m_nHumid << std::endl;

}

Friend function in C++

class Humid;

class Temp {

private:

int m_nTemp;

public:

Temp(int nTemp) { m_nTemp = nTemp; }

friend void PrintWeather(Temp &cTemp, Humid &cHumid);

Copyright © 2006 Addison-Wesley. All rights reserved. 1-15

friend void PrintWeather(Temp &cTemp, Humid &cHumid);

};

class Humid {

private:

int m_nHumid;

public:

Humid(int nHumid) { m_nHumid = nHumid; }

friend void PrintWeather(Temp &cTemp, Humid &cHumid);};

Language Examples: Java

• Similar to C++, except:
– All user-defined types are classes

– All objects are allocated from the heap and
accessed through reference variables

– Individual entities in classes have access
control modifiers (private or public), rather

Copyright © 2006 Addison-Wesley. All rights reserved. 1-16

control modifiers (private or public), rather
than clauses

– Java has a second scoping mechanism,
package scope, which can be used in place of
friends
• All entities in all classes in a package that do not
have access control modifiers are visible
throughout the package

An Example in Java

class StackClass {

private:

private int [] stackRef;

private int maxLen, topIndex;

public StackClass() { // a constructor

stackRef = new int [100];

maxLen = 99;

Copyright © 2006 Addison-Wesley. All rights reserved. 1-17

maxLen = 99;

topPtr = -1;

};

public void push (int num) {…};

public void pop () {…};

public int top () {…};

public boolean empty () {…};

}

An Example in Java

public class TestStack {

public static void main(String[] args) {

StackClass myStack = new StackClass();

myStack.push(42);

Copyright © 2006 Addison-Wesley. All rights reserved. 1-18

myStack.push(17);

System.out.println(“top of stack is:”+ myStack.top());

myStack.pop();

…

}

}

Language Examples: C#

• Based on C++ and Java

• Adds two access modifiers, internal and
protected internal

• All class instances are heap dynamic

• Default constructors are available for all

Copyright © 2006 Addison-Wesley. All rights reserved. 1-19

• Default constructors are available for all
classes

• Garbage collection is used for most heap
objects, so destructors are rarely used

• structs are lightweight classes that do
not support inheritance

Language Examples: C# (continued)

• Common solution to need for access to
data members: accessor methods (getter
and setter)

• C# provides properties as a way of
implementing getters and setters without

Copyright © 2006 Addison-Wesley. All rights reserved. 1-20

implementing getters and setters without
requiring explicit method calls

C# Property Example

public class Weather {

public int DegreeDays { //** DegreeDays is a property

get {return degreeDays;}

set {degreeDays = value;}

}

private int degreeDays;

...

Copyright © 2006 Addison-Wesley. All rights reserved. 1-21

...

}

...

Weather w = new Weather();

int degreeDaysToday, oldDegreeDays;

...

w.DegreeDays = degreeDaysToday;

...

oldDegreeDays = w.DegreeDays;

C# example

class CelsiusToFahrenhit

{

private double celsius;

public double celsius {

set { celsius = value; }

}

public double ToFahrenhit() {public double ToFahrenhit() {

return (celsius*9/5)+32;

}

}

static void Main(string[] args)

{

CelsiusToFahrenhit myCTOF = new CelsiusToFahrenhit();

myCTOF.Celsius = 37;

Console.WriteLine(myCTOF.ToFahrenhit());

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-22

Parameterized Abstract Data Types

• Parameterized ADTs allow designing an
ADT that can store any type elements

• Also known as generic classes

• C++ and Ada provide support for
parameterized ADTs

Copyright © 2006 Addison-Wesley. All rights reserved. 1-23

parameterized ADTs

• Java 5.0 provides a restricted form of
parameterized ADTs

• C# does not currently support
parameterized classes

Parameterized ADTs in C++

• Classes can be somewhat generic by writing
parameterized constructor functions

template <class Type>
class stack {
private:

Type *stackPtr;
…

Copyright © 2006 Addison-Wesley. All rights reserved. 1-24

…
public:

stack (int size) {
stk_ptr = new Type [size];
max_len = size - 1;
top = -1;

}
…

}
stack<int> stk(100);

Encapsulation Constructs

• Large programs have two special needs:

– Some means of organization, other than simply
division into subprograms

– Some means of partial compilation (compilation
units that are smaller than the whole program)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-25

units that are smaller than the whole program)

• Obvious solution: a grouping of
subprograms that are logically related into
a unit that can be separately compiled
(compilation units)

• Such collections are called encapsulation

Encapsulation in C

• Files containing one or more subprograms
can be independently compiled

• The interface is placed in a header file

• Problem: the linker does not check types

Copyright © 2006 Addison-Wesley. All rights reserved. 1-26

• Problem: the linker does not check types
between a header and associated
implementation

• #include preprocessor specification

Encapsulation in C++

• Similar to C

• Addition of friend functions that have
access to private members of the friend
class

Copyright © 2006 Addison-Wesley. All rights reserved. 1-27

C# Assemblies

• A collection of files that appear to be a
single dynamic link library or executable

• Each file contains a module that can be
separately compiled

• A DLL is a collection of classes and

Copyright © 2006 Addison-Wesley. All rights reserved. 1-28

• A DLL is a collection of classes and
methods that are individually linked to an
executing program

• C# has an access modifier called internal;
an internal member of a class is visible to
all classes in the assembly in which it
appears

Naming Encapsulations

• Large programs define many global names;
need a way to divide into logical groupings

• A naming encapsulation is used to create a
new scope for names

Copyright © 2006 Addison-Wesley. All rights reserved. 1-29

• C++ Namespaces

– Can place each library in its own namespace and
qualify names used outside with the namespace

– C# also includes namespaces

Namespaces in C++

Syntax

namespace identifier

{

entities

}

namespace::entities

#include <iostream>

using namespace std;

namespace first

{

int var = 5;

}

namespace second

Example:

namespace myNamespace

{

int a, b;

}

namespace::a

namespace::b

namespace second

{

double var = 3.1416;

}

int main () {

cout << first::var << endl;

cout << second::var <<

endl;

return 0;

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-30

C++ example

#include <iostream>

using namespace std;

int main() {

float celsius;

Copyright © 2006 Addison-Wesley. All rights reserved. 1-31

float fahrenheit;

cout << "Enter Celsius temperature: ";

cin >> celsius;

fahrenheit = 1.8 * celsius + 32;

cout << "Fahrenheit = " << fahrenheit << endl;

return 0;

}

std::cout << "Enter Celsius
temperature: ";std::cin >> celsius;

std::cout << "Fahrenheit = " << fahrenheit <<
std::endl;

Naming Encapsulations (continued)

• Java Packages

– Packages can contain more than one class
definition; classes in a package are partial
friends

– Clients of a package can use fully qualified

Copyright © 2006 Addison-Wesley. All rights reserved. 1-32

– Clients of a package can use fully qualified
name or use the import declaration

Summary

• The concept of ADTs and their use in program
design was a milestone in the development of
languages

• Two primary features of ADTs are the packaging of
data with their associated operations and
information hiding

Copyright © 2006 Addison-Wesley. All rights reserved. 1-33

information hiding

• C++ data abstraction is provided by classes

• Java’s data abstraction is similar to C++

• C++ allow parameterized ADTs

• C++, C#, and Java provide naming encapsulation

